2023 ICRI Fall Convention St. Pete Beach, FL | October 16-18

## **Understanding FRP – Utilizing Carbon Fiber in Structural Repairs**





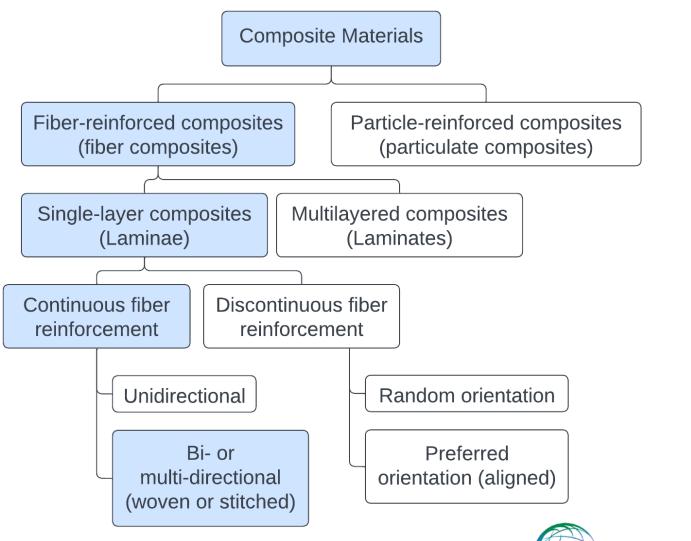
Jake Holland Principal

SUMMIT Sealants and Restoration Services

Tami Worker, PE Associate, Investigative Engineering Martin/Martin Consulting Engineers

The ideas expressed in this ICRI hosted webinar are those of the speakers and do not necessarily reflect the views and opinions of ICRI, its Board, committees, or sponsors.

## The Many Forms of FRP Repairs


- Column
- Post-tension
- Spandrel
- Vertical Shear Wall
- Twin Tee





## Types of FRP

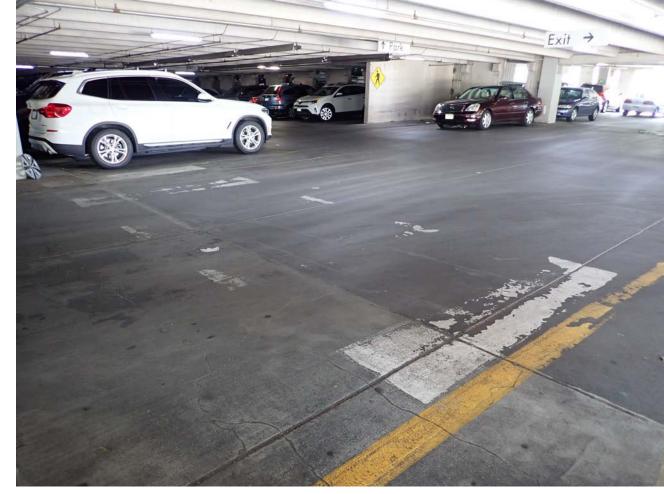
- Glass
- Aramid
- Basalt
- Carbon





## Outline

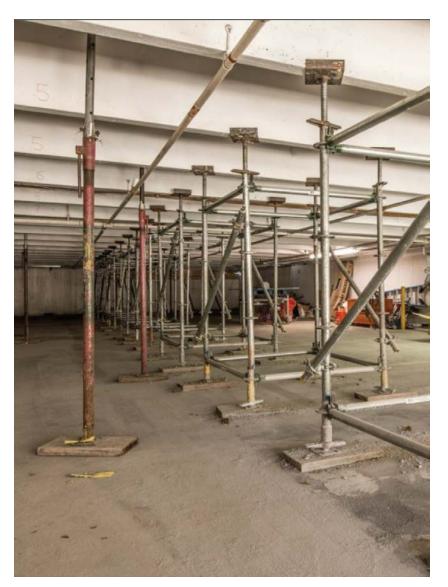
- Is FRP an appropriate repair?
  - Importance of team
  - Enlist Engineer
  - Feasibility engineering perspective
  - Benefits contractor's perspective








## **Project in Focus**


- Healthcare Facility
  - 6 story 3 below grade
  - Twin tee construction
  - Double helix
  - Horizontal/vertical concrete repairs, FRP reinforcement
  - High standards of functionality and cleanliness throughout project





## Shoring

- Major impact to facility
  - Cost
  - Lost revenue
  - Schedule
  - Aesthetic
  - Life safety

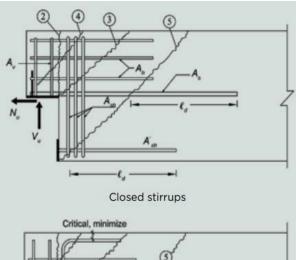




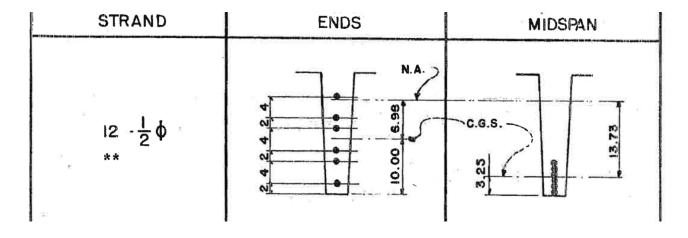
## **Investigation Phase**

#### **An Engineer's Perspective**




| Work<br>Item | Repair                                                        | General Location                          | Approximate<br>Quantity | Unit |
|--------------|---------------------------------------------------------------|-------------------------------------------|-------------------------|------|
| I-1          | Precast concrete double-tee<br>stem bearing end repairs       | Underside of Level 3,<br>2, 1, B1, and B2 | 70                      | EACH |
| I-2          | Double-tee stem end FRP u-<br>wraps (18 square feet per wrap) | Underside of Level 3, 2, 1, B1, and B2    | 42                      | EACH |





## **Investigation Phase**

- An Engineer's Perspective
- Original Design
- Sounding/NDT
- Select demolition
















#### **Repair Options**

- Concrete Repair only
- FRP
- Tee Stem Enlargement





#### Tee Stem Enlargement

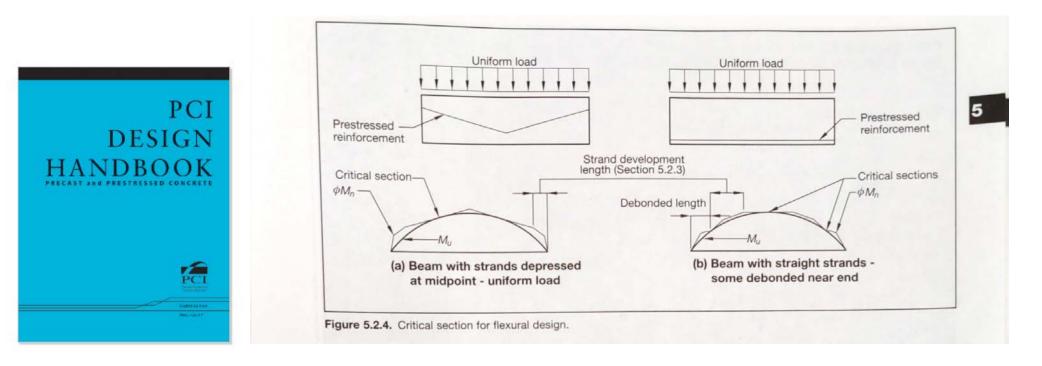


## **Engineering Considerations - FRP**

- Location of DT: strand patterns, live loads
- Dapped vs. non-dapped
- Number/length of strands exposed
- Damaged cross welds on WWR
- Fire load case






# Engineering Considerations - FRP<br/>ACI 562-21<br/>ACI 440.2R-17 $\phi R_n \ge 1.1D + 0.5L + 0.2S$ <br/> $\phi R_n \ge 1.1D + 0.75L$



| $\phi R_n \ge 1.1D + 0.5L + 0.2S$                                                           | (5.5.2a) | w/out FRP<br>should FRP                                  |  |  |  |  |
|---------------------------------------------------------------------------------------------|----------|----------------------------------------------------------|--|--|--|--|
| $\phi R_n \ge 1.1D + 0.75L$                                                                 | (5.5.2b) | be damaged                                               |  |  |  |  |
|                                                                                             |          | C                                                        |  |  |  |  |
| Shear Capacity - Contribution due to concrete $-2\sqrt{(f'c)}$<br>Supplemental shear steel? |          |                                                          |  |  |  |  |
| $\phi_{ex} R_{ex} \ge (0.9 \text{ or } 1.2)D + 0.5L + 0.2S$ (5.5)                           | Rec      | FRP<br>duced material<br>operties due to<br>vated temps. |  |  |  |  |



## **Engineering Considerations - FRP**



#### 5.2.1.6 Critical Section

For simply supported, uniformly loaded, prismatic nonprestressed components, the critical section for flexural design will occur at midspan. Where reinforcement is not uniform for the entire span, critical sections may occur at the bar cutoff locations. To reduce the end stresses at release for uniformly loaded prestressed components, some strands may be depressed near midspan or debonded for a length near the ends. For strands with a single-point depression, the critical section can usually be assumed at 0.41. For straight strands, the critical section will be at midspan. but if some strands are debonded near the end, an additional critical section may occur near the end of the debonded length, as shown in Fig. 5.2.4.











Identifying Pros & Cons

# A Contractor's Perspective

- Pricing
- Schedule

YEAR

ANNIVERSARY

• Testing

## Pricing

- Enlargement is often twice the cost of FRP
- FRP offers labor reduction



#### Identifying Pros & Cons



#### Schedule

- Front end FRP
  design longer
  duration
- FRP installation roughly ¼ of enlargement



#### Identifying Pros & Cons



## Testing

- Pull off values
- Breaks of host material
- Breaks of prepackaged repair mortar



#### Identifying Pros & Cons



Benefits of Implementing Carbon Fiber Reinforcement (FRP)

- Corrosion Mitigation
- Immediate Strength
- Low Profile
- Sustainability / Longevity
- Discreet





Maintaining Functionality During Construction

- Quicker Test Results
- Reduced Laydown Area



## Questions?

Jake Holland Jake H@summitse alants.com 720-389-8633



Tami Worker TWorker@martinmartin.com 303-431-6100





INTERNATIONAL CONCRETE REPAIR INSTITUTE 1000 Westgate Drive, Suite 252 St. Paul, Minnesota 55114 USA P: +1 651-366-6095 | E: info@icri.org | www.icri.org