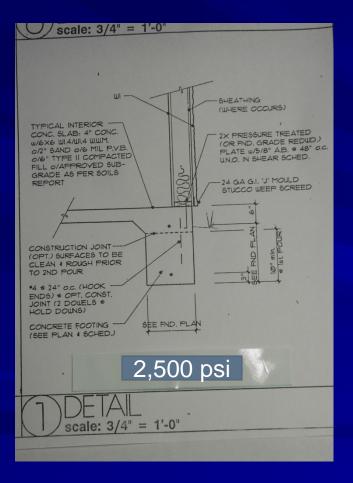
Calcium Chloride Test What does it measure?

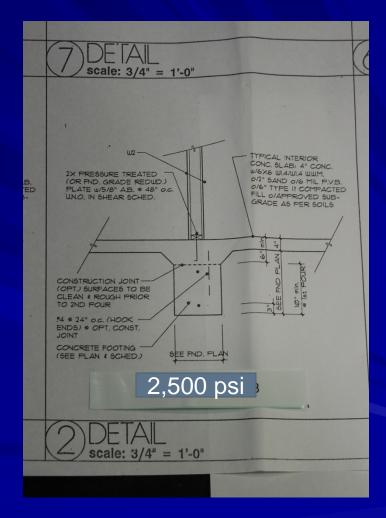
Ashok Kakade, P.E.

Concrete Science, Inc. Materials & Structural Engineers

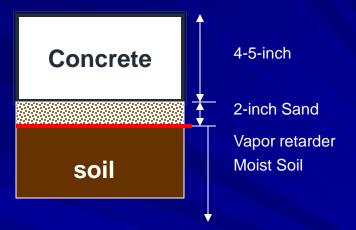
1534 B Street, Hayward, CA 94541-3018 Tel. (510) 581-2342 Fax (510) 581-4178 www.concretescience.com, info@concretescience.com

Water? Moisture? Vapor? Transmission? Emission? Capillary?


Variety of Structures



Typical Details



Typical Slab-on-Grade

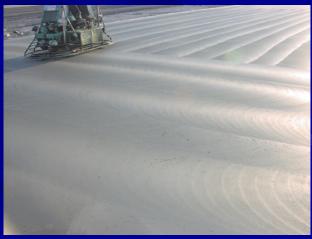
Construction Practices

Dampen sand prior to concrete placement
 i.e. ~ 5% water by weight

~ 2,500 psi Concrete

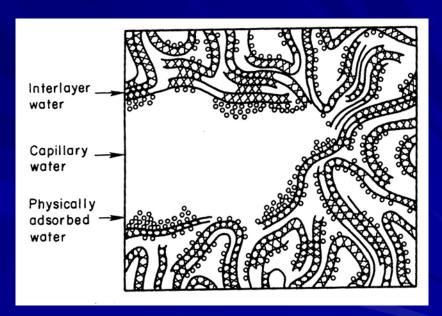
Water content = 250 lb / cu yd

Water: ~ 6% by weight of Concrete



Water lost from Concrete

Bleed water


Water in Hydrated Concrete

Capillary water

Adsorbed water

Interlayer water

Chemically combined water

Source: Feldman, Sereda, 1970

Slab Ready for Flooring?

800 lb Gorilla! Moisture Vapor Emission Limit

3 %?

3 lb/1000 sq.ft/day?

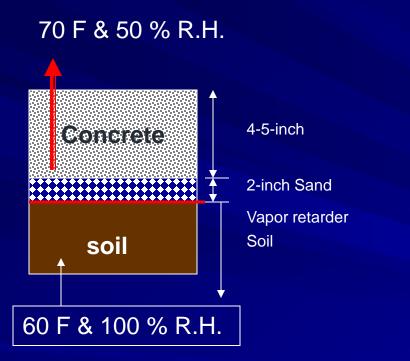
Concrete Science, Inc In-House Research 7-Month Age, w/c = 0.40

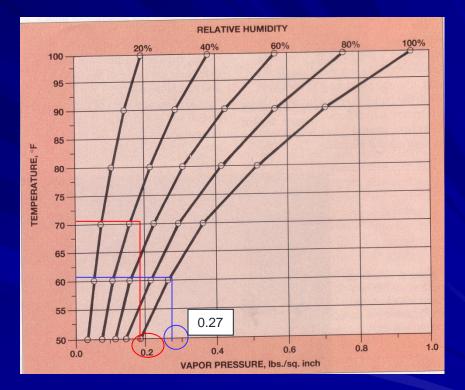
Mix Design: 4,000 psi, **w/c = 0.4**, 7-sack mix, **15%** Fly ash, slump =3-4"

Moisture Flow Through Concrete Water & Vapor

A complex phenomenon.

- Hetrogeneous Material

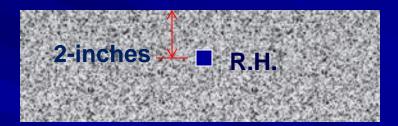

Darcy's Law
Fick's Law


Water Movement Capillary Flow

Temperature & Air flow

Difference in Relative Humidity

Vapor Movement Vapor Pressure Differential

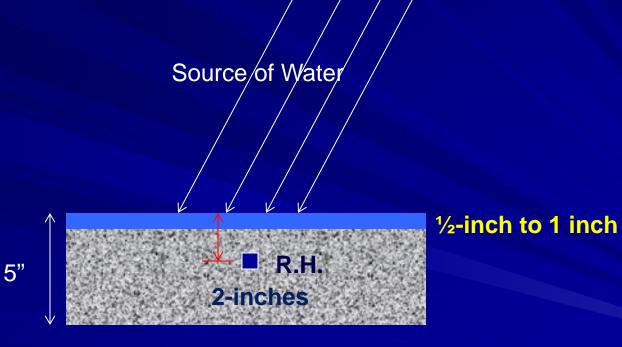

Source: Ashok Kakade, Harvey Haynes, Concrete Repair Digest, October 1990

Calcium Chloride Testing Is it worth it?

Moisture Vapor Emission Rate Test

Relative Humidity Test

What affects the Flooring Most?



Near surface moisture ¹/₂-inch to 1 inch

5"

Possible scenarios?

Water? Vapor? Transmission? Emission? Capillary?

Moisture from ambient air?

Case 2

Case 1 From Concrete?

Case 3 Sideways from concrete?

Case 4 & 5: Upwards from under the slab? Case 4: Saturated soil Case 5: Hydrostatic Pressure

Case 1 Source: Concrete

Primary source

- Concrete
- External Water Absorbed by Concrete

Concrete

Rain, Sprinklers, cleaning, Leaks, etc.,

Top 1/2 to 1 inch

Case 2 Source: Ambient air

Case 2 Source: Ambient Air Temp: 65 °F, R.H.= 60%

Test # 1 Ib/100 sq. ft/day	1.2
Test # 2	1.2
Test # 3	1.7

Case 2 Source: Ambient Air High Temp: 85 F, Low R.H.= 40%

Test # 1 Ib/100 sq. ft/day	1.9
Test # 2	1.9
Test # 3	2.2

Case 2 Source: Ambient Air

Temp: 70 °F, R.H.= 46%

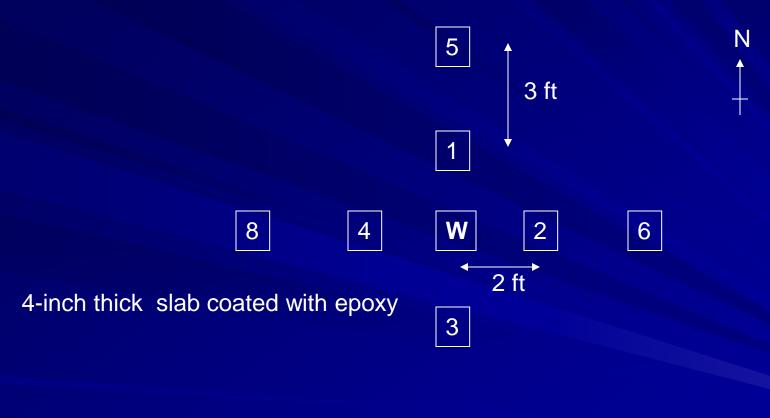
Gain in weight: 0.1 gm

i.e. 0.2 lb/1000 sq.ft /day

Case 2 Source: Ambient Air

0.2 & 0.3 lb/1000 sq.ft/day

Case 3 Source: Ponding Water


Case 3 Source: Ponding Water

Case 4 Source : Top of slab

Test Layout 20 x 20 ft Room

7

Source of Water: Top of Slab 4-inch thick slab

Water Pressure Approx. 0.5 psi

7 Days

MVER Tests in Progress

Temperature & Humidity In Room and Inside Test Dome

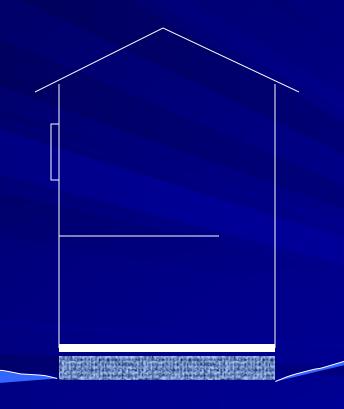
Temperature & Humidity Inside and Outside MVER Test Kit 100 90 80 Temperature, F, Humidity 🤅 70 60 50 40 Relative humidity inside the dome 30 Temp inside the dome Relative Humidity in Room 20 Temp in the Room 10 0 2:25 PM 5:40 PM 0:55 PM 11:55 AM 3:10 PM 6:25 PM 9:40 PM 8:55 PM 12:10 AM 3:25 AM 6:40 AM 9:55 AM 1:10 PM 4:25 PM 7:40 PM 2:10 AM 5:25 AM 8:40 AM 2:55 AM 4:10 AM 7:25 AM 0:40 AM

Time, hrs

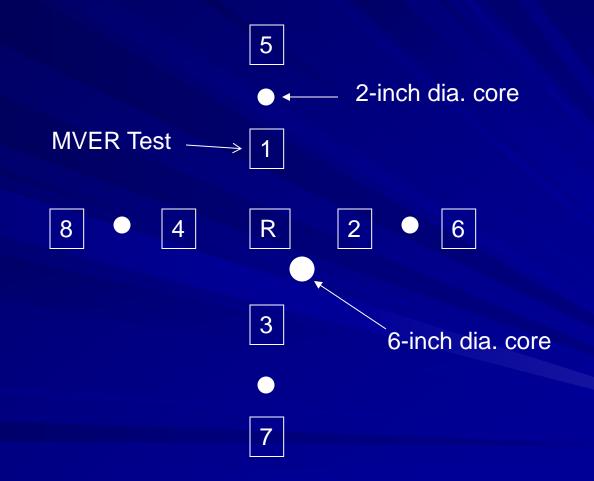
Increase in MVER Within 2 ft from Source of Water

Test #	Native	7-Day Ponding	Increase in MVER
1	5.2	13.2	Not Valid
2	5.6	7.0	1.4
3	6.2	8.7	2.5
4	7.1	9.0	1.9

Increase in MVER Within 5 ft from Source of Water

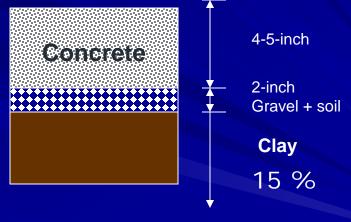

Test #	Native	7-Day Ponding	Increase in MVER
5	6.1	8.0	1.9
6	6.6	7.5	0.9
7	7.2	7.9	0.7
8	6.7	6.9	0.2

Average Increase in MVER 7-Day Test

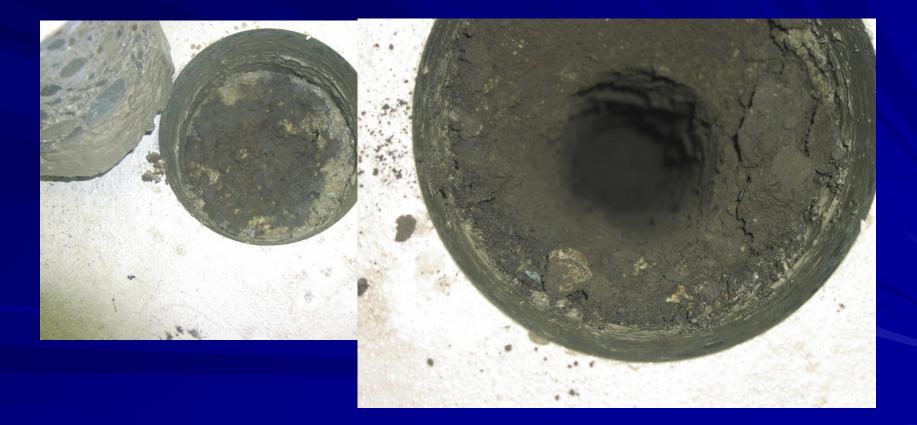

Within 2 ft from water Source – 1.9 lb

Within 5 ft from the water source – 0.9 lb

Case 4 Saturated soil


Layout of MVER Tests 20 x 20 ft Room

Cross Sectional Details


~ 3,000 psi, 45 year old

No vapor retarder

Details at 6-inch Core

Case 4

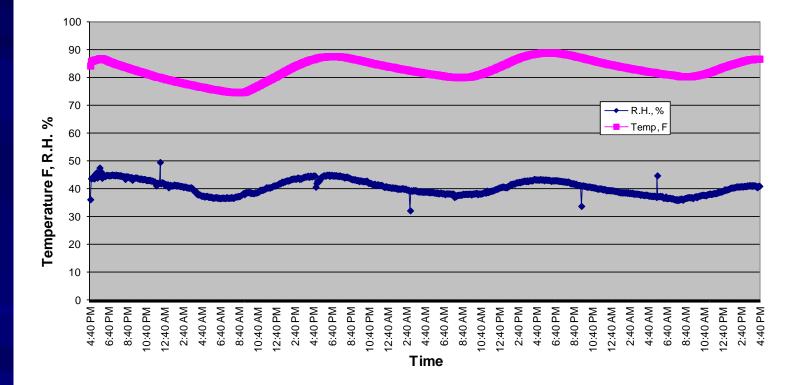
Source of Water under the slab

Water was introduced in subgrade soil for 7 days.

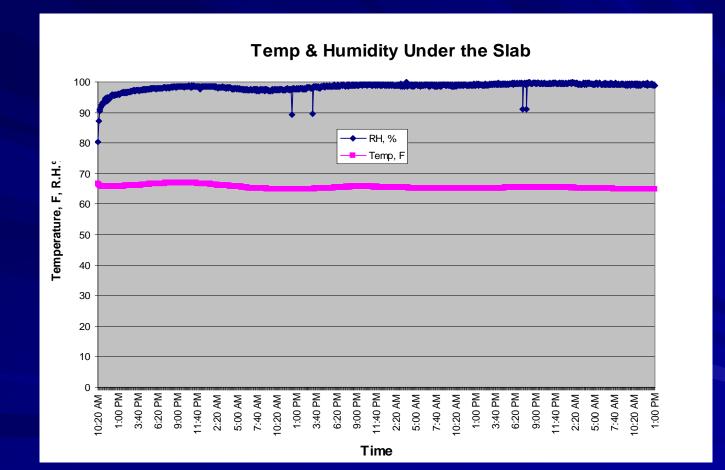
Change in MVER 7 days of Water in Subgrade

Temp. 65°F, R.H. 60%

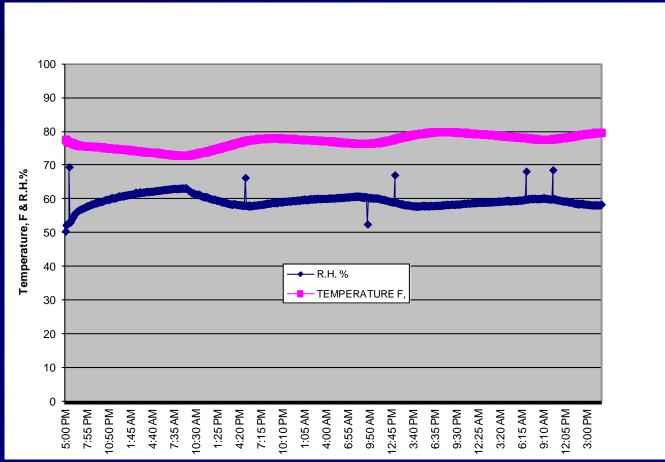
Test #	7-Day Water Ponding	7-Day of watering subgrade	Increase in MVER
1	Invalid		-
2	7.0	6.8	-0.2
3	8.7	8.2	-0.5
4	8.0	8.7	0.7


Change in MVER 7 days of Water in Subgrade

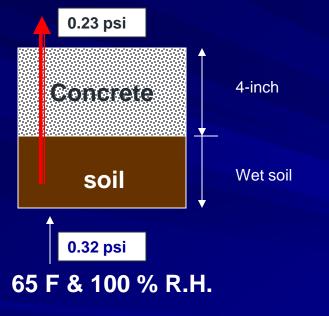
Temp. 65°F, R.H. 60%

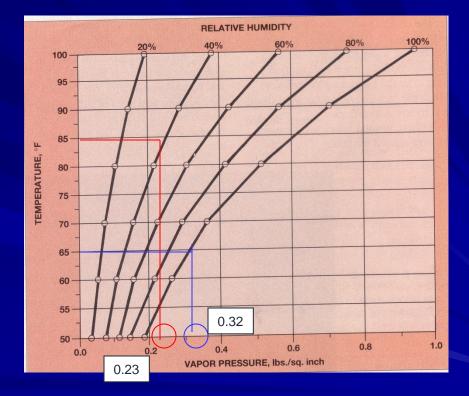

Test #	7-day of Water Ponding	7-Day of watering Sub grade	Increase in MVER
5	8.0	9.0	1.0
6	7.5	6.7	-0.8
7	7.9	7.7	-0.2
8	6.9	6.5	-0.4

Increased the Ambient Temperature


Temp & Humidity High Ambient Room Temperature

Temperature & Humidity Below the Slab (Soil)

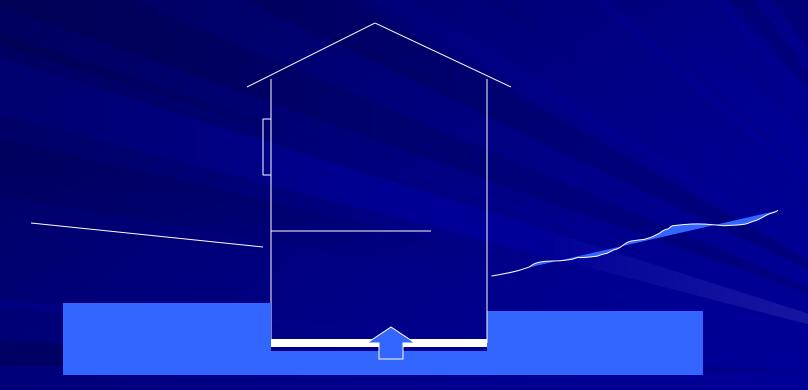



Temperature & Humidity Inside Dome due to High Room Temp

Vapor Drive Vapor Pressure Differential

85 F & 40 % R.H.

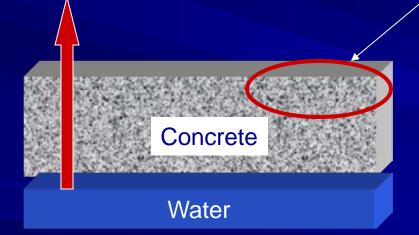
Source: Ashok Kakade, Harvey Haynes, Concrete Repair Digest, October 1990


Increase in MVER High Temp & Low Humidity Temp 85°F, R.H. 40%

Test	7-day of	7-day of Water	Increase
#	Water	in subgrade	in MVER
	Ponding	85°F, 40% R.H	
1	Invalid		-
2	7.0	9.9	2.9
3	8.7	9.9	1.9
4	8.0	11.6	3.6

Increase in MVER High Room Temp & Low Humidity Temp 85°F, R.H. 40%

Test #	Native	7-day of Water in subgrade 85°F, 40% R.H	Increase in MVER
5	8.0	8.8	0.8
6	7.5	9.3	1.8
7	7.9	7.6	-0.3
8	6.9	8.8	1.9



Moisture Transmission >>> 10 lb/1000 sq. ft/ day

Concrete is a medium

Primary source of water is not concrete

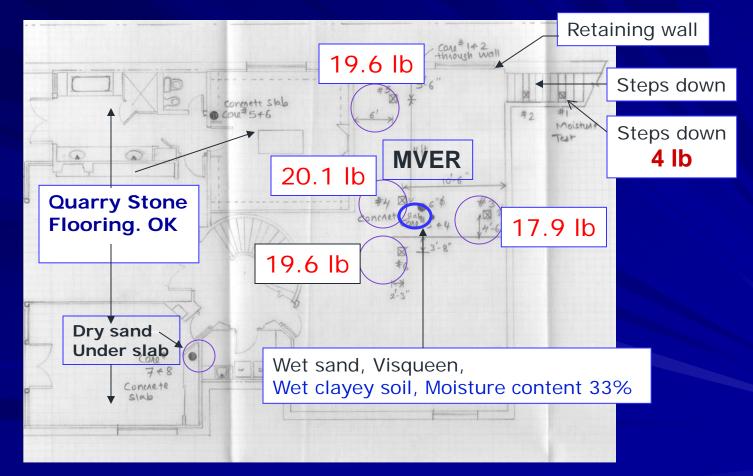
The MVER will still read from top 1 inch

Sources of Water

- 1. Hydrostatic Pressure
- 2. Irrigation water
- 3. High water table
- 4. Plumbing leak under slab

Project Inspection

Underground Basement with water leaks below the slab


Underground Basement

Plan view of the House

Basement ~ 10 ft below ground

Vinyl Flooring

Basement slab

Summary

What Does Calcium Chloride Test Measure?

- The test measures vapor emission from near surface of concrete.
- When sealed correctly, the influence of moisture from the ambient air is minor.
- The increase in vapor emission from a localized ponding on the surface or from the side is limited to a short distance from the source of water.
- Relatively high vapor emission rate can be attributable to the water from the top or from under the slab.

Thank You!

Any?

Ashok Kakade, P.E.

Concrete Science, Inc. Materials & Structural Engineers

1534 B Street, Hayward, CA 94541-3018 Tel. (510) 581-2342 Fax (510) 581-4178 www.concretescience.com, info@concretescience.com