
REPAIR OR REPLACE?

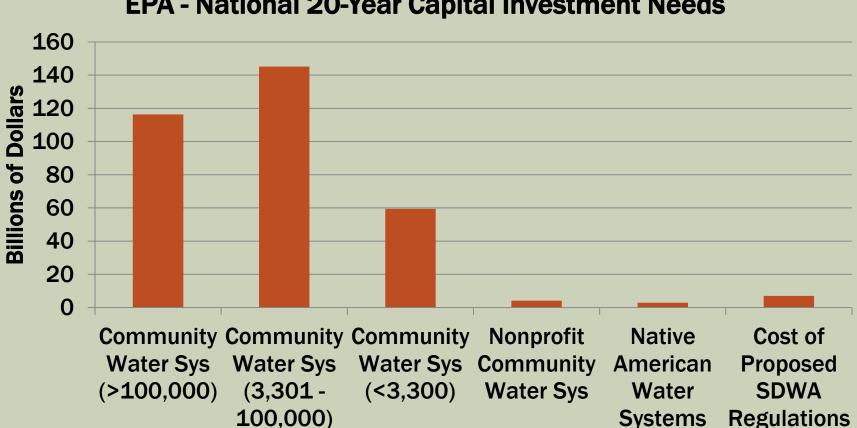
The Price of Aging Infrastructure

Jason Spinnato, PE Geoff Scheid, EIT

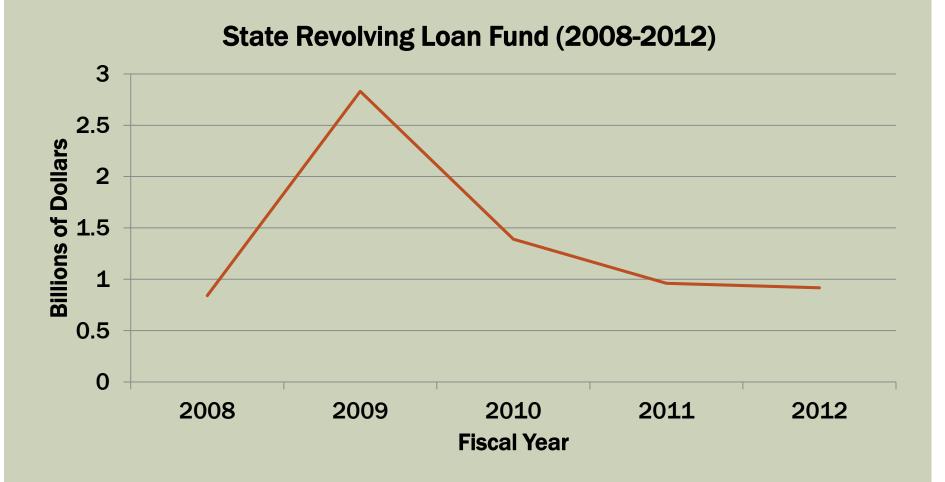
OVERVIEW

US Infrastructure Needs vs. Spending

Concrete Structures in W/WW Treatment

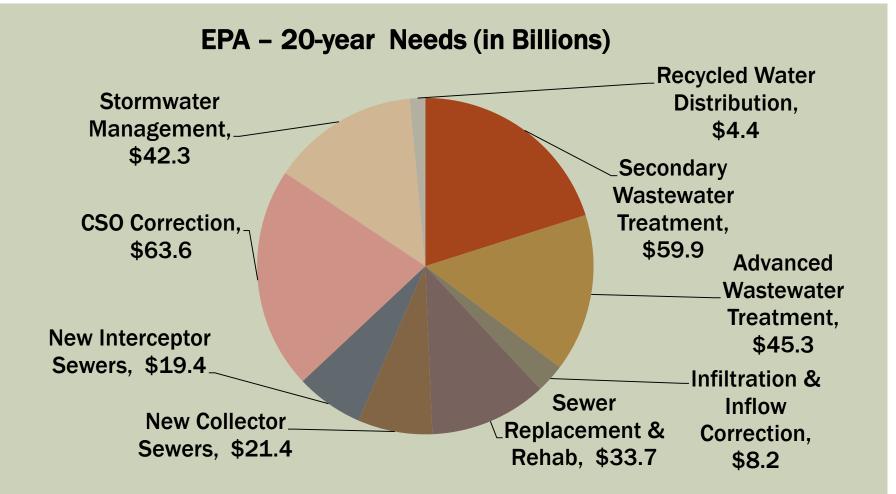

Types of Deterioration

Types of Repair & Protection


Case Studies

- 170,000 Public Water Systems
- Serving 264,000,000 People
- Failures lead to disruption in:
 - Transportation infrastructure
 - Communication infrastructure
 - Emergency response
- 1,000,000 miles of Water Mains
 - Condition mostly unknown
 - 240,000 Water main breaks each year
 - Worst in older cities
- Safe Drinking Water Act of 1996
 - Stricter regulatory requirements
 - Increased operating costs + shrinking budgets =>
 - Deferred maintenance

- 20-year Capital Investment Needs (EPA)
 - **\$334,800,000,000**
 - Does not include additional capacity for growth
 - 53,000 Community water systems
 - 21,400 Nonprofit water systems
- Federal Appropriations
 - Average \$1,380,000,000 annually
 - 8% of EPA estimate over 20 years
 - Trending toward state & local funding
 - Water rates to rise



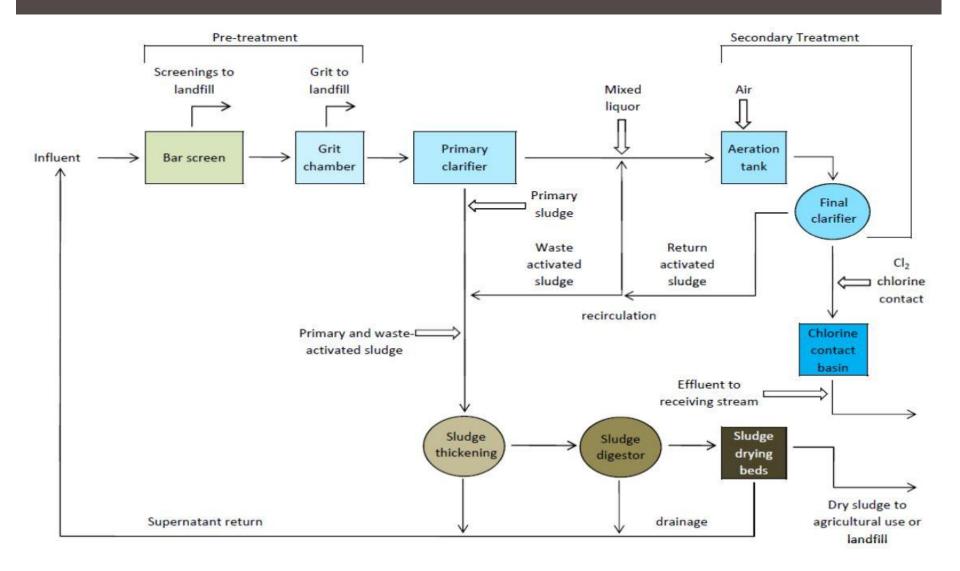
EPA - National 20-Year Capital Investment Needs

- 750,000 Miles of public sewer mains
- 14,780 Wastewater treatment facilities
- 19,739 Wastewater pipe systems
- 900 Billion gallons of sewage discharged annually
 - Aging sewer mains
 - Inadequate capacity
 - Discharged to rivers & streams

- 20-year Capital Investment Needs (EPA)
 - **\$298,000,000,000**
 - \$105 Billion (35%) for wastewater treatment
- Federal Appropriations
 - Average \$2,100,000,000 annually
 - 14% of EPA estimate over 20 years
- Looking Ahead
 - Water reuse (From poo-to-you!)

OVERVIEW

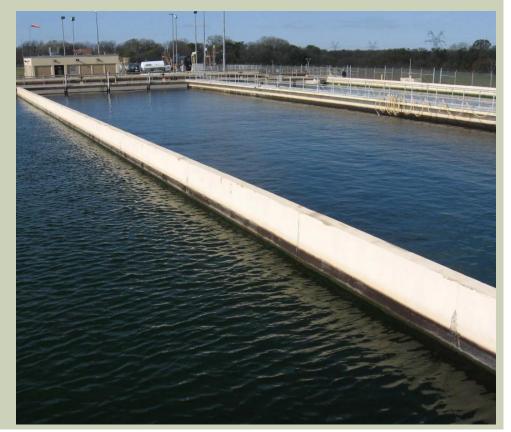
US Infrastructure Needs vs. Spending


Concrete Structures in W/WW Treatment

Types of Deterioration

Types of Repair & Protection

Case Studies


WASTEWATER TREATMENT PROCESS

CONCRETE STRUCTURES IN W/WW

Concrete Basins

- Primary/Secondary Clarifiers
- Aeration Basins
- Equalization Basins
- Founded below grade
- Open top

CONCRETE STRUCTURES IN W/WW

Concrete Buildings

- Junction Boxes
- Pump Stations
- Headworks
- Above or below grade
- Typically enclosed

CONCRETE STRUCTURES IN W/WW

Concrete Tanks

- Clear well Tanks
- Sludge Thickeners
- Typically below grade
- Typically enclosed

OVERVIEW

US Infrastructure Needs vs. Spending

Concrete Structures in W/WW Treatment

Types of Deterioration

Types of Repair & Protection

Case Studies

TYPES OF DETERIORATION

CHEMICAL ATTACK

Causes

- H₂S
- Chlorine

Effects

- Concrete deterioration
- Rebar corrosion

TYPES OF DETERIORATION JOINT MATERIAL

Causes

- Groundwater
- Joint material
 - degradation

Effects

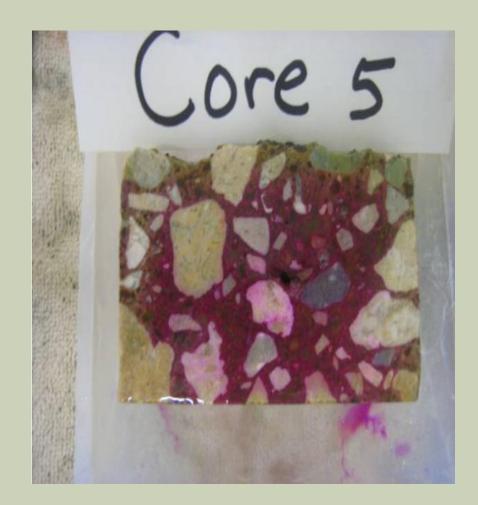
Leaking in/out

TYPES OF DETERIORATION CRACKING

Causes

- Shrinkage
- Excessive stress in concrete
 - Soil movements
 - Loading/Unloading

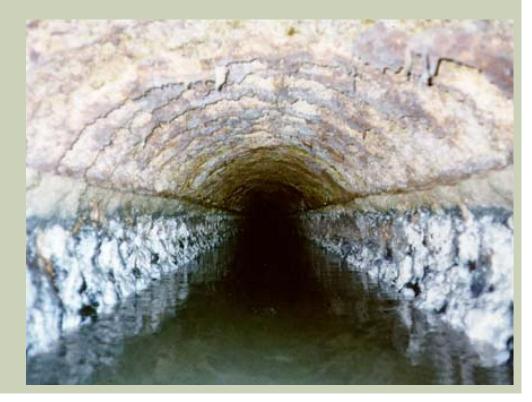
Effects


- Process fluids leaking out
 - Contamination of groundwater
- Groundwater leaking in
 - Contamination of process fluids

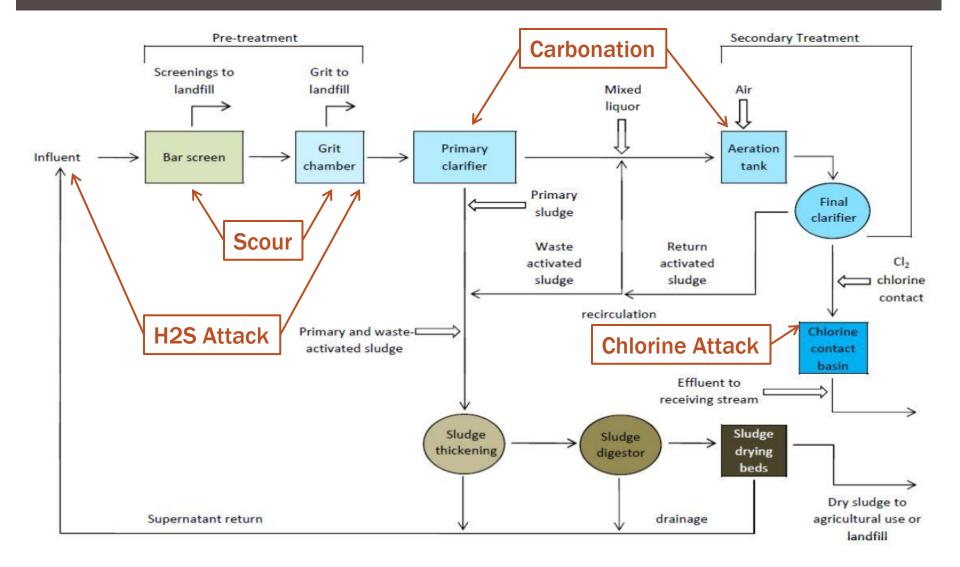
TYPES OF DETERIORATION CARBONATION

Causes

- High relative humidity
- Carbon Dioxide reacts with alkali to lower pH
- Effects
 - Spalling
 - Rebar corrosion


TYPES OF DETERIORATION SCOUR (EROSION)

Causes


- Nonlinear flow velocities (turbulence)
- Abrasive wear
 - Process "solids" & grit
 - Process equipment

Effects

- Loss of concrete cover
- Exposure and corrosion of rebar

WASTEWATER TREATMENT PROCESS

OVERVIEW

US Infrastructure Needs vs. Spending

Concrete Structures in W/WW Treatment

Types of Deterioration

Types of Repair & Protection

Case Studies

TYPES OF REPAIR

Repair Mortars

- Applications
 - Hand-applied
 - Spray-applied
 - Form-and-pour/pump
- Uses
 - Spalled areas
 - Matrix loss
 - Chemical Protection
- Typical Cost
 - ~\$250-\$300 per ft³

TYPES OF REPAIR

Crack Injection

- Types
 - Epoxy
 - Polyurethane
- Uses
 - Restore structural integrity
 - Water-tightness
 - Limit reinforcing corrosion
- Typical Cost
 - ~\$30-\$35 per ft.

TYPES OF REPAIR

Expansion Joint Systems

- Applications
 - Within-the-joint
 - Surface-applied
- Uses
 - Water-tightness
- Typical Cost
 - ~\$50 per ft. for a 1-inch joint

TYPES OF PROTECTION

PVC Liners

- Applications
 - Adhesive-applied
- Uses
 - Water-tightness
 - Chemical Protection
 - Acidic Protection
- Typical Cost
 - ~\$30-\$50 per ft²

TYPES OF PROTECTION

Epoxy & Composite Coatings

- Applications
 - Trowel-applied
 - Spray-applied
- Uses
 - Chemical Protection
 - Acidic Protection
- Typical Cost
 - ~\$10-\$15 per ft²

OVERVIEW

US Infrastructure Needs vs. Spending

Concrete Structures in W/WW Treatment

Types of Deterioration

Types of Repair & Protection

Case Studies

CASE STUDIES

H₂S Attack

Coating Failure

Chlorine Attack

Carbonation

Rehabilitation

Background

- Wastewater Treatment Plant 100 Million Gal/Day
- Critical Flow Structure
- Sub-grade
- Closed-top
- Constructed in 1974

Observations

- Severe deterioration (max 5")
- Severely corroded reinforcing
- Corroded embedded metals
- No coating or liner system
- Spalling & delamination
- Varying degrees of deterioration

Causes

- Severe H₂S exposure
- High velocity flows
- Turbulent flow releases
 liquid H₂S to sulfuric acid
 gas
- No protection system

Recommendations

- Sandblast or hydro blast back to sound concrete
- Replace corroded reinforcing
- Spray-applied repair mortar
- Replace embedded metals
- Install liner protection system
- Influent Box (worst case)
 - Sluice gate failure blocked critical influent to plant
 - Beyond repair; entirely new construction around existing
 - Compromised structural integrity

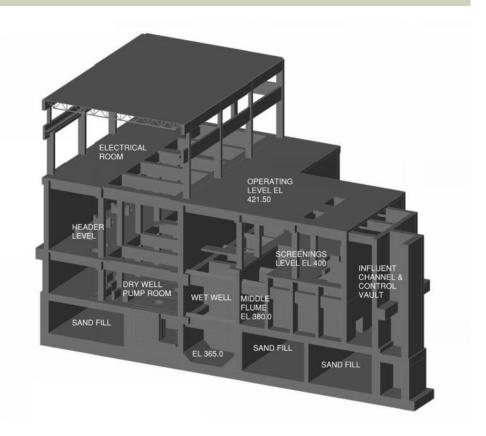
Owner Considerations

- Cost of repairs vs. expected performance & service life
- Critical structures to be kept in service or bypassed
- Cost of inaction
 - Further deterioration
 - Imminent failure of key structure
 - Life/Safety concerns

CASE STUDIES

H₂S Attack

Coating Failure


Chlorine Attack

Carbonation

Rehabilitation

Background

- Headworks Structure
- Constructed in late 1970's
- Modifications and coatings installed 2002
- Coatings began failing shortly after installation

Observations

- Failure of repair from 2002
- Extensive coating failure
- Delamination
- Pin holing & Holidays

Recommendations

- Near future (1-2 years) replacement of failed coatings for highest risk areas. Estimated cost ~\$270,000
- Replacement of failed coatings within 3-5 years for areas with lower H₂S concentrations. Risk to pumps due to coating failure a concern. Estimated cost ~ \$1.9 million
- Delay in repairs may lead to further structure deterioration and more costly repairs in the future.

Owner Considerations

- Repair failed coatings or delay?
- Risk of equipment damage?
- Liability for failures?

CASE STUDIES

H₂S Attack

Coating Failure

Chlorine Attack

Carbonation

Rehabilitation

Background

- Wastewater Treatment Plant
- Chlorine Contact Basin
 Mixer Chamber
- Confined Space
- Sub-grade Vault
- No protective coatings

Observations

- Significantly deteriorated concrete
- Full sections of exposed reinforcing
- Reinforcing corroded to ¹/₂
 original section
- Visible scaling and general deterioration

No protective coating or liner

Causes

- Chlorine Attack
 - Severe exposure with no protective coating
- Scour
 - Mixing with grit and solids causing erosion

Recommendations

- Estimated repair costs = \$70,000 \$80,000
- Level of deterioration did not warrant consideration for replacement
- Complete section replacement of significantly deteriorated section
- Protective coating application (quartz-reinforced composite)

CASE STUDIES

H₂S Attack

Coating Failure

Chlorine Attack

Carbonation

Rehabilitation

Background

- Water Treatment Plant
- Two sub-grade basins
- First constructed 1955
- Second constructed 1972
- Process fluids highly acidic

Observations

- Walls show severe matrix loss
- Minimal reinforcement exposure
- Base slab in good condition
- Significant cracking/leaking
- Embedded metals corroded
- Highly acidic raw water influent

Causes

Petrographic testing performed

on core samples

- Approx. 1" of cover remaining
- Matrix loss of approximately ¹/₂"
- Carbonation due to highly acidic process fluids

Recommendations

Option 1

- Composite Overlay
- Trowel-applied
- Epoxy-based
- Quartz-reinforced
- 1/4" Thickness
- \$35 \$40 per ft² at ¹/₄ inch thickness

- Option 2
 - Liner System
 - 100% Solid
 - Epoxy-based
 - \$18 per ft² at 80 mil thickness

- Option 3
 - Repair Mortar
 - Spray-applied
 - Fiber-reinforced
 - 1/2" 3/4" Thickness
 - \$24 per ft² at 1 inch thickness (\$325/ft³)

Owner Considerations

- Pros & Cons of each system
- Expected service life vs. quality of protection
- Cost of future repairs for each system

CASE STUDIES

H₂S Attack

Coating Failure

Chlorine Attack

Carbonation

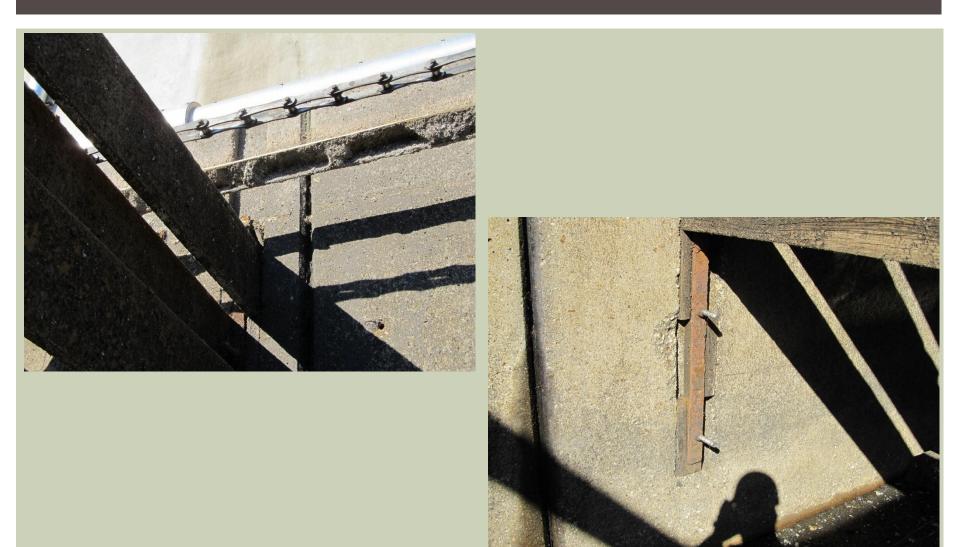
Rehabilitation

Background

- Rehab to add 30 years of service life
- Replacement Considered
- Constructed in 1950's
- Modified in 2006
- 6 Primary Clarifier Basins
- Service Tunnels
- Effluent Channel
- Influent Channel

Observations

Primary Clarifiers


- Isolated matrix loss and spalling near embedded metals
- Significant deterioration or failure of expansion joint material
- Embedded metals severely corroded
- Operational capability limited

Service Tunnels

- Expansion joint material completely failed
- Spalling at soffit of top slab w/ corroded reinforcing

Influent/Effluent Channels

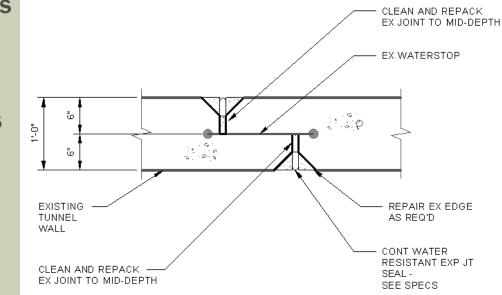
- Minor H₂S deterioration (¼" or less)
- Embedded metals corroded
- Expansion joint material failed

Testing

- Petrographic testing on core samples
- 3 cores from PC walls
- 3 cores from PC floors
- Carbonation up to 3/8" deep
- Minor H₂S deterioration
- No evidence of ASR

Rehab vs. Replace

- Cost of Rehab
 - Projected Cost ~ \$14 Million


Advantages –

- Cheaper option now
- 30 year design life
- More redundancy with six basins
- Able to maintain operations
- Disadvantages -
 - Extensive rehabilitation required
 - Eventual replacement required
 - Systems more difficult to maintain

- Cost of Replacement
 - Projected Cost ~ \$21.0 Million
- Advantages -
 - New structures with 30 year design life
 - Systems with current technology
 - Circular clarifiers provide greater efficiency
- Disadvantages -
 - Higher capital construction cost
 - Less redundancy with two clarifiers vs. six

Recommendations

- Replacement of clarifiers too costly
- Install rock anchors in new basin slab (to address buoyancy)
- Repair mortar at spalled areas
- Remove abandoned embeds
- Liner/coating not needed
- Expansion Joint repair
- Replace deficient walkways
- Replace railings


CONCLUSION

The Cost of Inaction

- Enormous investments needed to maintain current systems and provide capacity for population growth
- Difficult decisions for owners with limited capital funds and needs for repair. Limiting rehab often leads to more expensive repairs in the future.
- A properly identified and executed rehab can provide Owners with a viable option to replacement offering legitimate balance between life cycle cost and available capital funds.

QUESTIONS?

