ICRI 2014 Fall Convention, Kansas City, MO

University of Missouri Health Care Parking Garage Structural Repairs, Columbia, MO

Richard McGuire, P.E., Structural Engineering Associates Inc. Liao Haixue, P.E.,

Vector Corrosion Technologies Ltd.

Introduction

- The parking garage is a cast-in-place, post-tensioned beam and slab concrete structure that was completed in 1986. There are three (3) elevated decks and one slab-on-grade level, providing a total of some 450 hospital parking spaces.
- Recent tendon eruptions triggered three phases of corrosion investigation: an initial or pilot investigation, then a more extensive sampling at each garage level, followed by a complete investigation of <u>all</u> slab tendons for breaks and moisture content
- As a result of the condition surveys testing and findings, repair strategies were developed for all the slab tendons and other distressed structural elements throughout the garage.

Strand eruption triggered initial investigation

Summary of Forensics Testing – I

- Investigate Level 1 North p/t slab tendons where ruptured tendon at underside soffit occurred
 - Invasive exploratory to expose and assess live stressing anchorages at expansion joint, also to examine and perform screwdriver penetration tests (SPT) at the tendons' mid-span low drape position
 - Out of 39 flexural slab tendons, 17 (43%) found to be broken
 - Most of the live anchors exhibited moderate to severe corrosion due to adjacent leaking expansion joint and partly encapsulated anchors
 - Due to L1-N bay findings, structural repairs documents prepared to replace all live anchors and repair all broken tendons in this bay
 - Additional testing was recommended to obtain a good sample of anchor conditions at all five expansion joint locations, and perform additional testing of slab tendons and corrosion backgrounds

Visual Inspection of Live Anchors at P/T Slab Expansion Joints

Wedge Anchor

Invasive Exploratory at Live Anchors

Summary of Forensics Testing – II

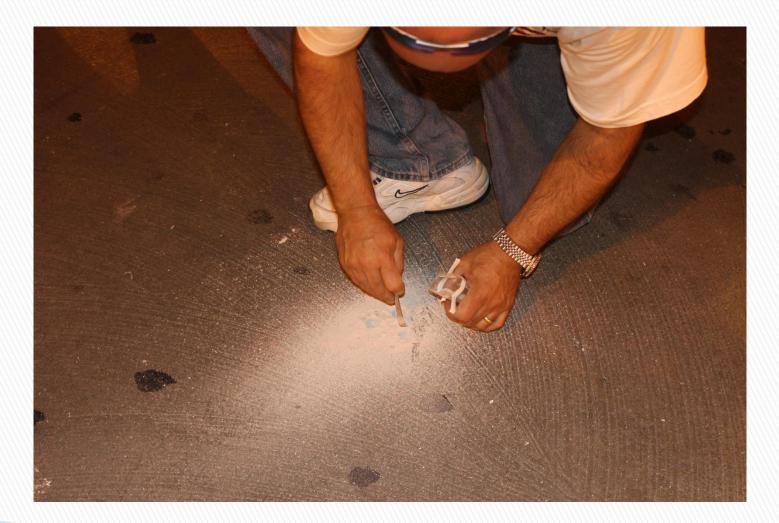
- Investigated sample of 40 live anchor locations at 4 remaining slab expansion joints in garage, expanded structural analysis and testing protocol of p/t slab tendons
 - Performed structural analysis of Level 1 p/t slab using IBC 2012 criteria (LL = 40 psf)
 - Invasive exploratory to expose and assess (partly encapsulated) live stressing anchorages at all expansion joints and stairway slab edges
 - Performed visual condition and elevated slabs chain-dragging surveys of garage
 - Approx. 80% of exposed live anchors exhibited moderate to severe corrosion damage
 - Chlorides levels in the elevated slabs, most > 400 ppm at 1" depth
 - Half-cell potential tests at all exposed anchorages, results indicated approx. 30% had active corrosion values < 350 mV
 - 64 tendons exposed for screwdriver penetration tests, visual examination of strands for corrosion damage, moisture levels and grease. Almost all tendons had excessive moisture

Concrete excavation and visual inspections

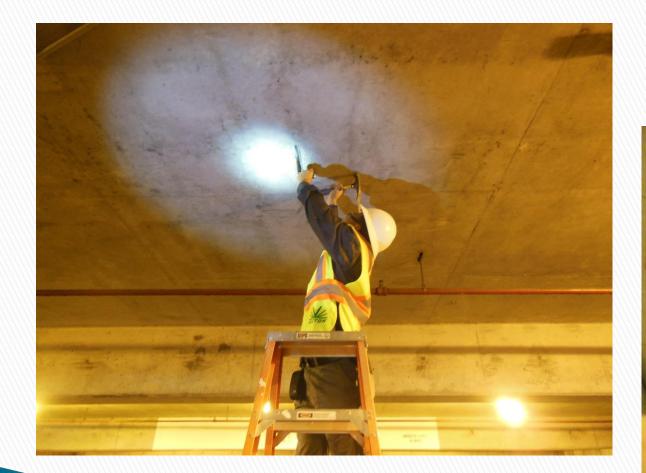
Summary of Forensics Testing – III

- Expanded testing to include SPT's to all remaining p/t slab tendons in the garage, total of 24 tendons were found to be broken and were later repaired
- Increased moisture (humidity) testing sample to 105 tendons, over 98% were "Wet"
- Prepared summary of recommendations and cost estimates, including open and closed garage options, temporary shoring approaches, and life cycle cost analysis for 20 years
- MU Hospitals and Clinics management decided to repair the garage, then dry out all of the p/t slab tendons and regrease under a separate construction contract.

P/T Live Anchorage Half-cell Corrosion Potential Evaluation



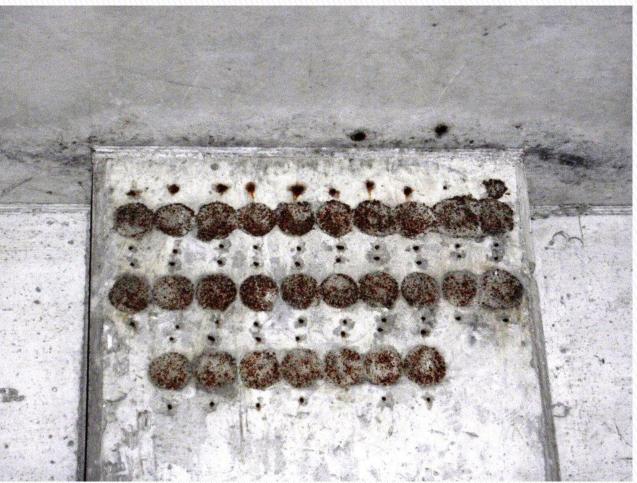
ASTM C876-09 Half-Cell Corrosion Potential


Reading (Cu/CuSO ₄ Half-cell)	Corrosion Condition
>-200 mV	Low (<5% probability of corrosion)
-200 to -350 mV	Uncertain (50% probability of corrosion)
<-350 mV	High (>95% probability of corrosion)

Source: National Association of Corrosion Engineers (NACE)

Chlorides contamination testing of p/t slabs

Screwdriver Penetration Tests of Tendons



Exposed P/T Tendon for Screwdriver Penetration Testing, Corrosion and Grease Condition Grading

Visual Inspections of Anchor Grout Pockets at P/T Beams and Slab Edges

Unbonded Post-Tensioned Cable Corrosion

- The Problem Corrosion Damage, Wet Tendons, Leaking Joints
- The Cause Moisture and Oxygen (and Contamination?)
- The Evaluation Moisture / Humidity Levels (Wet, Moist, or Dry)
- Possible Solution Option is Cable Drying of Original Tendons
- Additional Protection
 - Installation of Galvanic Anodes at Exp. Joint and Beam Anchorages
 - Traffic Membranes on both Vehicular and Pedestrian Surfaces
 - Grease Injection (Regreasing) following Dehumidification of Slab Tendons

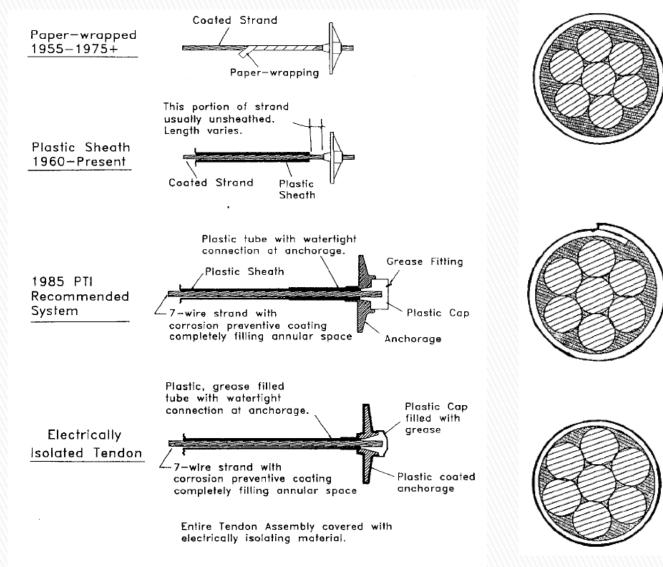


Fig. 3.2—Evolution of corrosion protection for unbonded single strand tendons for buildings (reprinted from Reference 2).

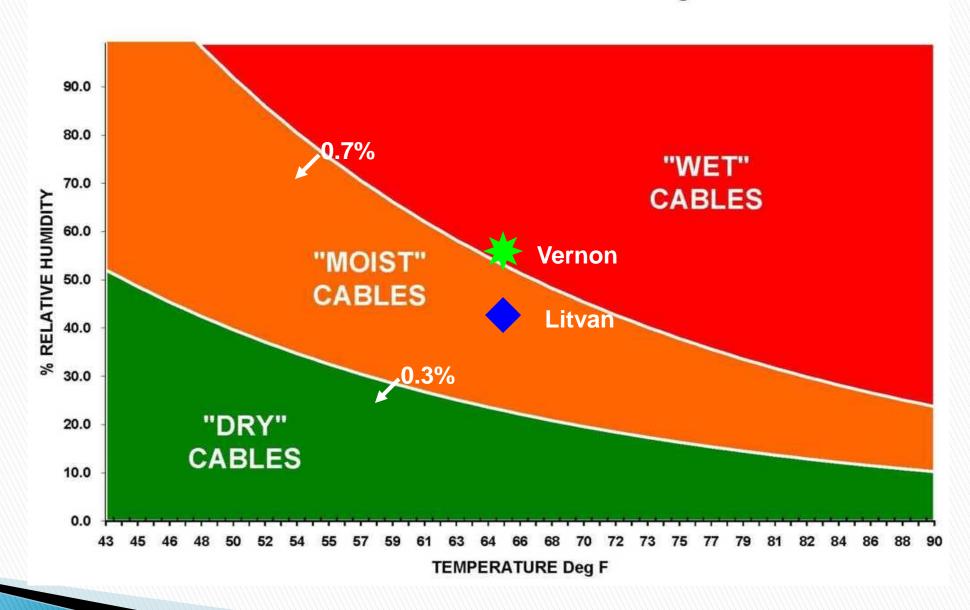
ACI 423-4r98

PUSH-THROUGH PREFORMED TUBE

STRAND PUSHED THROUGH AS GREASE IS APPLIED.

HEAT-SEALED

FORMED FROM FLAT STRIP AS GREASE IS APPLIED.

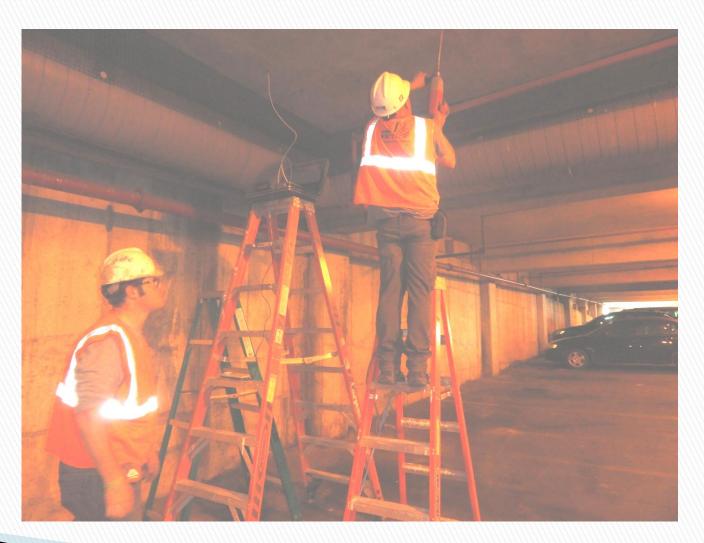

EXTRUDED

FORMED BY EXTRUDING OVER STRAND AS GREASE IS APPLIED.

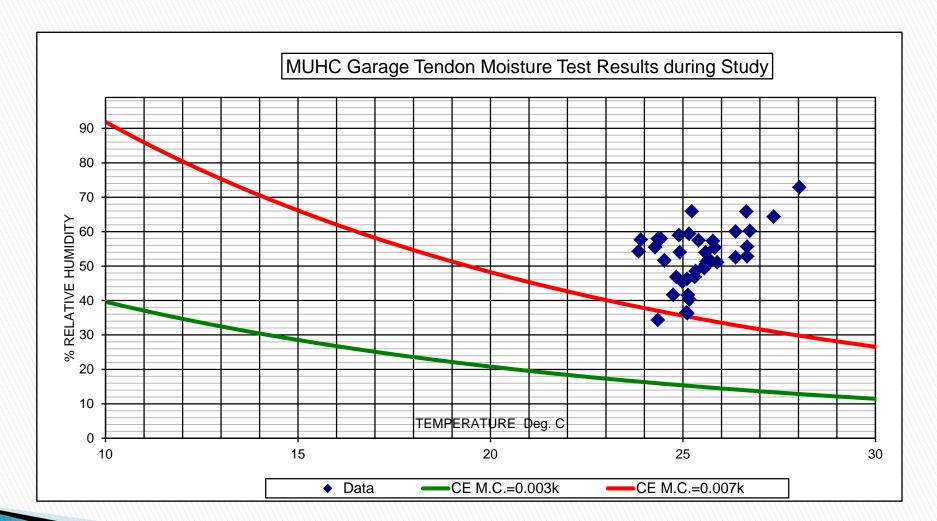
Moisture & Corrosion Relationship

- W Vernon was the first to realize the importance of moisture to the rate at which metals corrode in the early 1900's
- Vernon first discovered that a critical relative humidity, (CRH), exists below which the rate of corrosion is negligible at 60% to 70%
- Dr. G.G. Litvan, then Principal Research Officer with the National Research Council (NRC) in Ottawa, that under normal conditions corrosion of steel is negligible below 45% RH

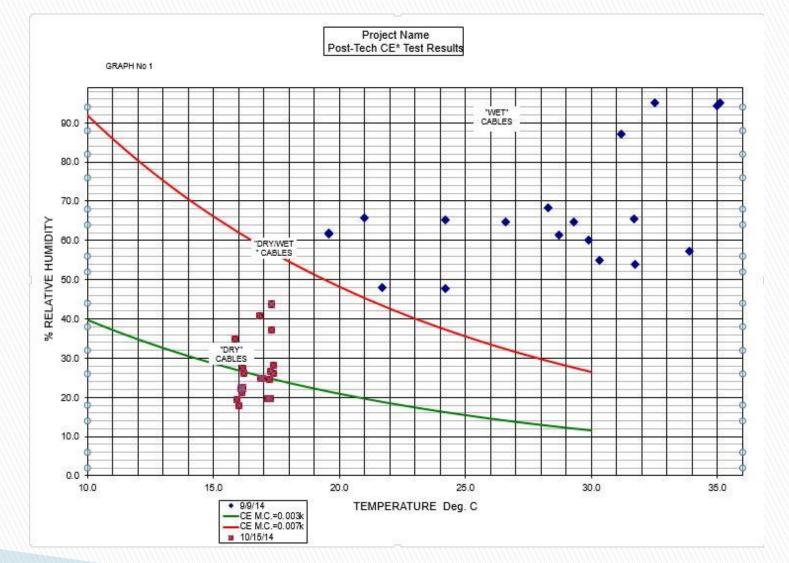
Post-Tech CE Corrosion Evaluation Grading Chart


Corrosion Evaluation and Testing of P/T Slab Tendons

Corrosion Evaluation Testing Classification:


Classification Potential Moisture Content Code for Corrosion

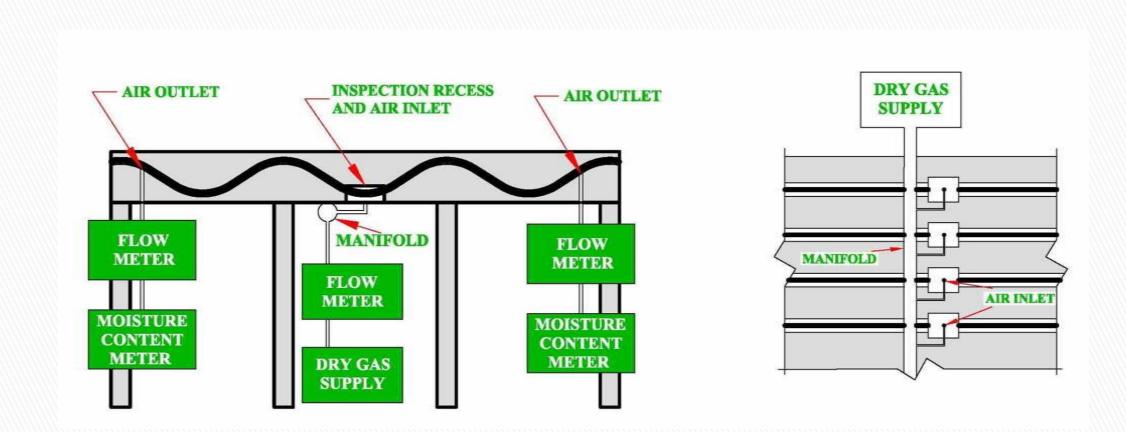
	1	Low (Dry)	< 0.3%			
Dry	2	Moderate (Moist)	0.3% to 0.7%			
Wet	3	High (Wet)	> 0.7%			


PT Corrosion Potential Evaluation

MUHC Garage - PT Corrosion Potential Evaluation

MUHC Garage PT Corrosion Potential Evaluation

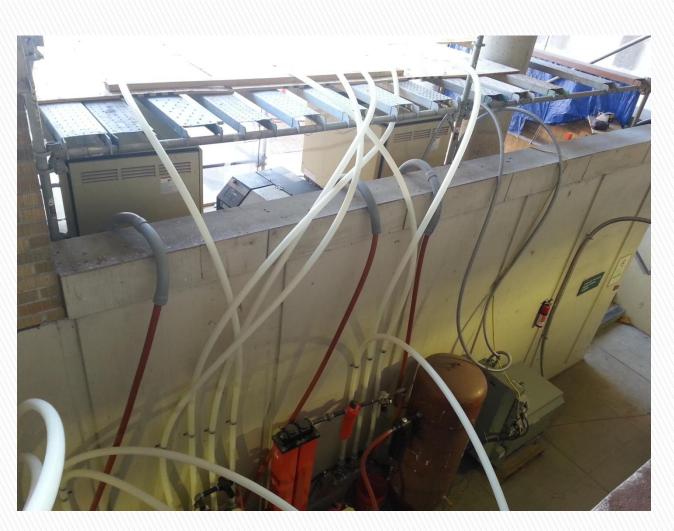
MUHC Garage PT Corrosion Potential Evaluation


Investigation results

- The tendons were made from stuffed cables, in which voids between the sheath and the strands are present.
- 25 out of 497 strands that were exposed are broken, and in addition two sheaths with no strands at the location of drilling were detected in Phase II. 5 out of 6 breaks are in Level 1.
- 65% exposed strands are in good to fair conditions.
- 62% exposed cables have either no grease or deteriorated grease.
- 100% of the Level 1 tested cables have excessive moisture in the tendon sheath, 39 out of 40 Level 2 and 3 tested cables have excessive moisture, while cables in Levels 2 and 3 are drier than those in Level 1.
- 30% of the 41 half cell potential readings are in the active corrosion category while only 25% of the tendons have no active corrosion

P/T Repair Strategies for MUHC Garage

- Replace all the p/t slab expansion joints in garage
- Replace all the live stressing anchorages at the expansion joints and approx.
 20' adjacent sections of strands near expansion joints
- Install galvanic anodes at expansion joints, beams and slab edges (stairway) anchorages for corrosion protection.
- Repair approx. 24 broken tendons and replace 3000' of monostrand
- Repair all unsound structural concrete surfaces in garage
- Apply heavy duty vehicular traffic membrane to all levels and stairway
- Dry /Dehumidify and re-grease all the tendons to remove the moisture sources of the corrosion.


Cable Drying Process Diagram

Tendon Drying Equipment Area

Drying Piping Distribution from Plant

P/T Drying Piping to Slab Tendons

Monitoring Drying Data and Performance



FILE:						Post-Te	ech CE* T	FEST & C	GRADING				AMBIENT	LINE		
PRJCT:	Project: ML	JHC PARKI	NG GAR	AGE	0	SURVEY	ED BY:	TYLER B	ROWN, CH	ARLES W	'HITE		COND.	READING		
AREA: LI	AREA: LEVEL 2					DATE:	9/9/20	14				% RH				
CPE RDGS InitialX_ Progress			rogress	Fir	nal					Deg. C						
											WET/DRY BOU	JNDARY				
		INPUT DATA							MC =			0.007	Kg/Kg Dry Air			
CABLE	CABLE	Cable Reading		Cable Reading		Pws	MC "W"	CE	Max	Wet or	DRY/WET	Flow	CPE GRADE	DISTRIBUT'N		
Set	No.	Deg C	%RH				M.C	Dry	GRADE							
2N1											BIN	I DIST	% TTL	% TESTED		
	0										C	0		· \\		
	1	26.8	95.8	3.46	0.0210	3	0.0210	WET	30		1	0				
	21										2					
	3	28.4	64.2		0.0153	3	0.0153		30		3	275	100.0	100.0		
	4	28.4	66.2	3.78	0.0157	3	0.0157	WET	30							
	5	28.4	65.7	3.78	0.0156	3	0.0156	WET	30		TTL QUANT	275	100.0			
	6N	IT									TTL TESTED	275				
	7	28.4	63.9	3.78	0.0152	3	0.0152	WET	30							
	8	28.4	62.1	3.78	0.0148	3	0.0148	WET	30							
	9	28.4	60.7	3.78	0.0144	3	0.0144	WET	30			DRY/Wet Cable	Distribution			
	101	1T										No.		%		
	11	28.5	61.9	3.78	0.0147	3	0.0147	WET	30		10	0	DRY CABLES	0.0		
													DRY/WET			
	12	28.8	96.0	3.89	0.0238	3	0.0238	WET	30		20	0	CABLES	0.0		
	13	27.8	65.8	3.67	0.0152	3	0.0152	WET	30		30	245	WET CABLES	100.0		
	14	28.4	61.0	3.78	0.0145	3	0.0145	WET	30			245				
	15N	IT														
											DRY/WET					
	16	28.6		3.89	0.0153	3	0.0153		30		Grades	Dry = 10	•			
	17		63.7		0.0156		0.0156		30			Dry/Wet = 20	Dry/Wet <	0.007		
	18	28.7	61.5	3.89	0.0150	3	0.0150	WET	30							
	19N											Wet = 30				
	20	28.7	64.1	3.89	0.0157		0.0157		30		CPE Grades	0 = No Test		NT=NO TEST		
	21	29.1	95.0		0.0243	3	0.0243		30			1 = Dry		NA=NO ACCESS		
	22	20.5	68.1	2.34	0.0099	3	0.0099	WET	30			2 = Moist		NP=NO PORT		
	231	JT										3 = Wet		NF=NO FLOW		

Water bubbling from tendon during Initial drying

Tendons Regreasing Operations Underway

Suggested Parking Structure References:

American Concrete Institute (ACI) 362.1R-12:

Guide for the Design and Construction of Durable Concrete Parking Structures ACI 362.2R-13:

Guide for Structural Maintenance of Parking Structures

Precast Concrete Institute (PCI):

Maintenance Manual for Precast Parking Structures (2004)

National Parking Association (NPA):

Parking Garage Maintenance Manual

International Concrete Repair Institute (ICRI) 320.6-2012:

Guide for Evaluation and Repair of Unbonded Post-Tensioned Concrete Structures

ACI 546R-14:

Guide to Concrete Repair

ACI/ICRI:

Concrete Repair Manual – 4th Ed.

ICRI Technical Sessions

Thank you for your attendance and participation!

Questions??