International Concrete Repair Institute Student Meeting

Concrete Repair Methods

Louis J. Ruzzi, P.E District Bridge Engineer District 11-0

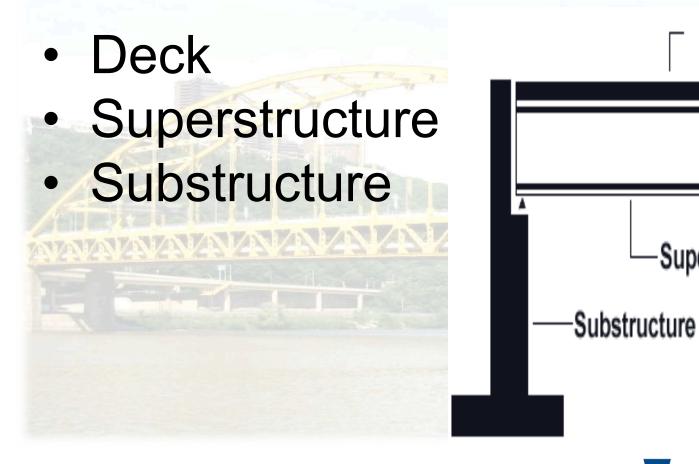
October 21, 2010

- Philosophy/ Funding
- Types of Treatments for decks, superstructure and substructure, including new technologies.
- Projects (11):
 - SR 3010 Lawrence County
 - SR 2048
 - SR 79-35M Allegheny County
 - SR 51 Allegheny County
 - Commercial Street Allegheny County
 - Westinghouse Bridge Allegheny County
 - McKees Rocks
 - Noblestown Road
 - Liberty Tunnel (Hydrodemo & Latex)
 - Poplar Avenue
 - Tornado Bridge

Funding

Funding:

- Maintenance(Betterment)-over \$2,000,000 for bridges
- Capital(regular state/federal allocation, Bond, Act 44 and Economic Stimulus including Interstate)
 \$43 million/yr to \$200 million/yr (2008 2010)
 plus an additional \$3 million for maintenance.
 This will drastically drop off after 2011 with out new revenue sources.



Philosophy: Right Treatment at the Right Time

- 100 year life and the age of the element
- Group Job-Do as much mileage as possible(bridges- high priority items-repair deck, mill/membrane/overlay(8-10 year treatment)
- Betterment-improving railing, signals, etc-can be supplemented with Bridge Pres funds(8-25 year treatment
- Interstate/Capital-mill/overlay thru replacement(15 year to 50-deck/100 year treatment for rest of bridge)

Types of Treatments

Deck

-Superstructure

Deck Sounding

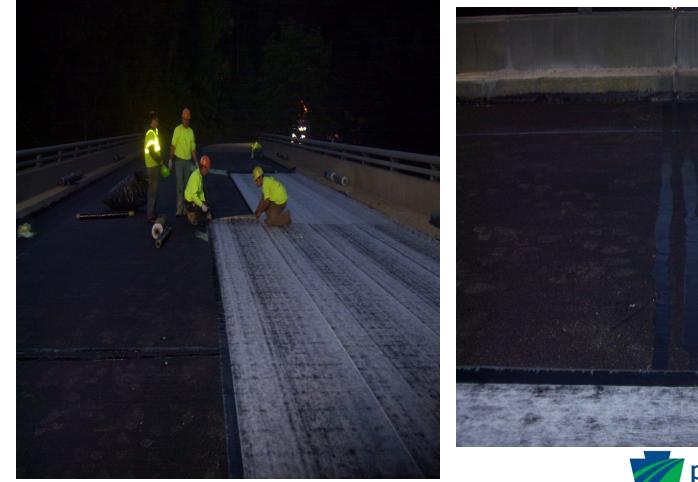
Types of Treatments-Deck

- Cracks
 - Penetrating Sealers- generally penetrates ³/₈" ¹/₂" into a crack I79 SB over Campbell's Run, Ft. Duquesne Bridge (latex cracks 2010)
 - Crack Repair (glued) –279 over McKnight Rd, a large number of pop outs, no rebar exposed.

Types of Treatments-Deck (continued)

- Overlays
 - Thin Overlays (3/8"-1/2") SR 3010 Lawrence County,
 I-79 in Allegheny County and Smithfield Street Bridge
 - Mill/Membrane/Overlay Example: I-79 over 19 or Turnpike/ 422 over Business 22
 - Mill/Hydrodemo/Latex-Numerous Projects-79 North of Neville Island(1¼"-5")
 - Latex competitor -3/4 " overlay-possible competitor to latex and asphalt-Walkers Mill Rd Bridge in Allegheny Co

Thin Overlay on SR 3010 Lawrence County



Milling/Membrane/Overlay for SR 2048

Milling/Membrane/Overlay for SR 2048 Continued

SR 79-35M Hydrodemo Continued

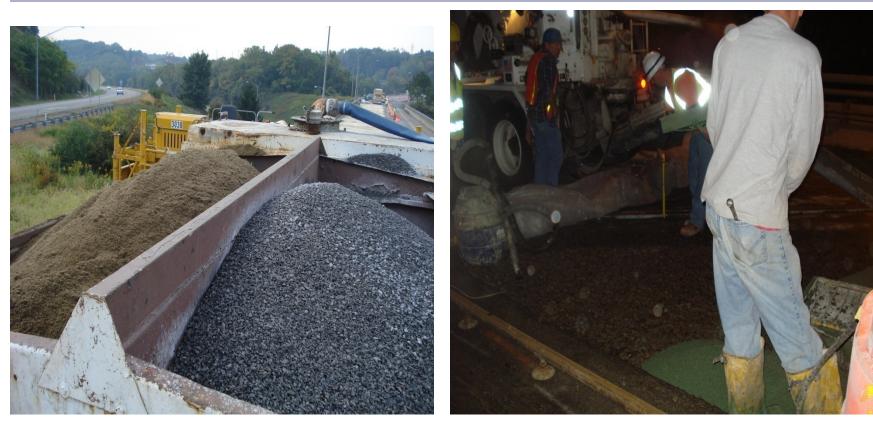
Straw catching the dirty water before it goes to the down spout on the edge during the Hydrodemo

Hydro Machine in Action

SR 79-35M Hydrodemo

Glenfield Deck After Hydro

Hydro of Mt. Nebo Bridge



SR 79-35M Hydrodemo Continued

SR 79-35M Hydrodemo Continued

The back of the Latex Truck (Sand & Aggregate)

Pouring the Latex

SR 79-35M Latex Bridge Deck

SR 79-35M Latex Bridge Deck

Before

After

Treatments on Superstructures

- Washing
- Repairs to P/S Beams University of Pittsburgh Study/ Developing Standards-Penoni
- T Beam-Sister beam repairs
- Concrete Arches-typical repair removing deteriorated concrete replacing new concrete by forming/pouring concrete or shotcrete

SR 60 In Lawrence County

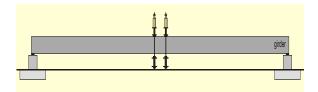
Before

PHOTO 46 DIRT AND DEBRIS ON BRIDGE SEAT AND HEAVY CORROSION AND RUST ON EXPANSION BEARING MEMBERS AT NORTH ABUTMENT

> BMS NO. 37 0060 0010 0629 INSPECTION DATE: 05/14/08

After

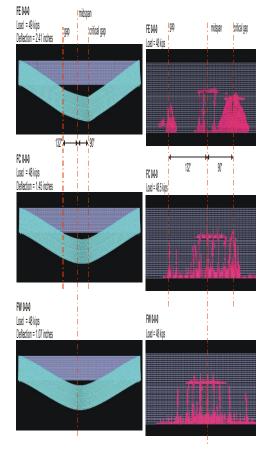
Pre-Stress Repair Methods Lake View Drive Bridge Collapse December 27, 2005


University of Pittsburgh Forensic Study and Test Program:

Testing to failure of two girders recovered from bridge

- Condition assessment
- Material properties
- Extensive AE testing
- Post-test sectioning and reassessment of condition

Analytical modeling of girders to facilitate improved load rating technique:


- Sections analysis
- 3D FEM modeling

Repair Methods for Pre-Stressed Concrete Bridges Continued

Review of state of PENNDOT Pre-Stressed concrete inventory

Sources and nature of damage

Review of available repair methods

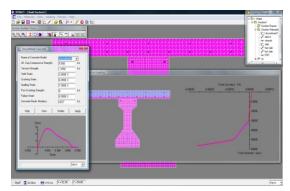
Development of state-of-the-art repair methods

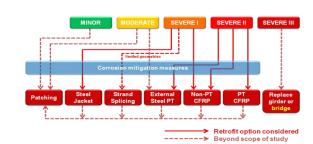
22 prototype design examples

- 3 girder types
- 4 levels of damage
- 7 repair methods/technologies

Best-practices recommendations

- repair method selection
- modeling techniques


Repair Methods for Pre-Stressed Concrete Bridges Continued


External Post-Tensioning

Post-Tensioned CFRP

Fiber Section Analysis

Repair Method Selection

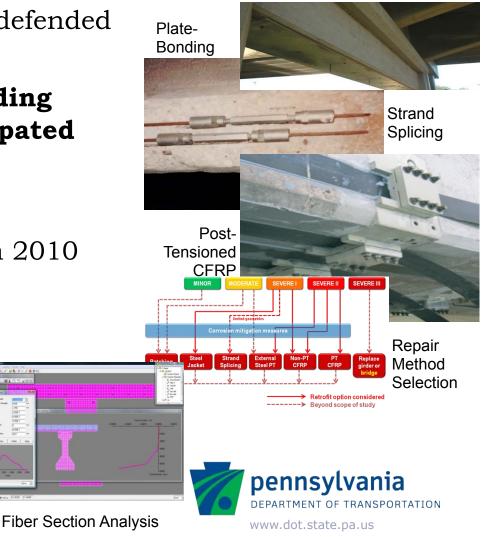
www.dot.state.pa.us

Plate-Bonding

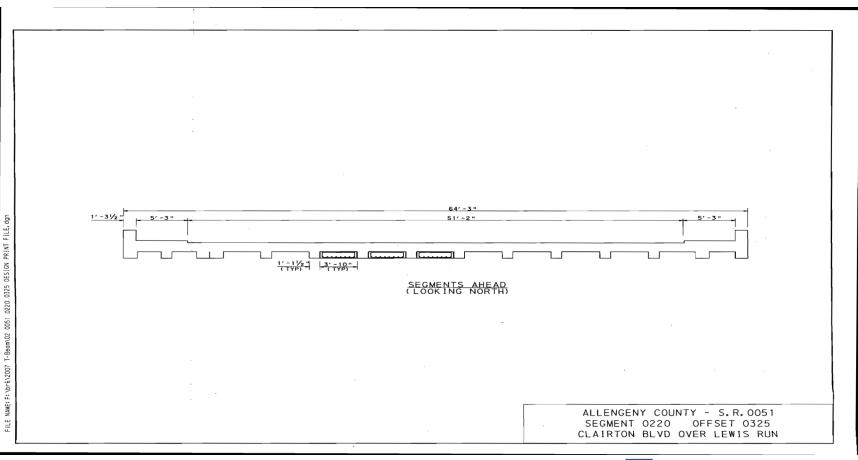
Strand Splicing

Repair Methods for Pre-Stressed Concrete Bridges Continued

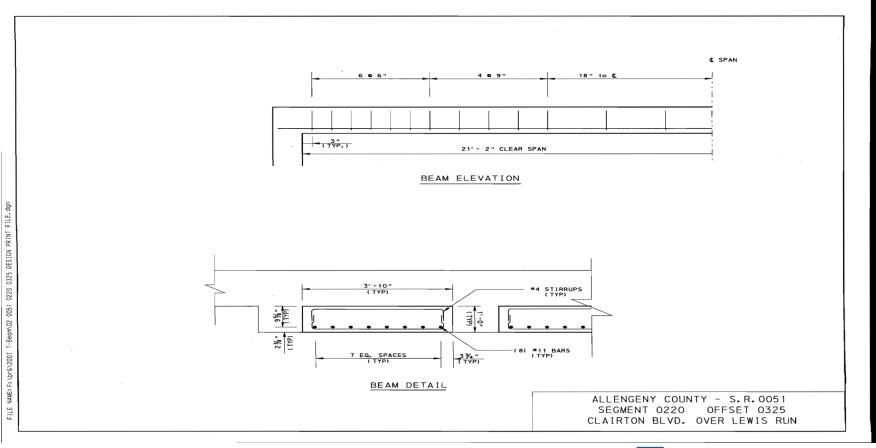
Kasan MSCE thesis successfully defended January 22, 2009


Final Report to PennDOT including Best-Practices document anticipated April 1, 2009.

Anticipate field implementation in 2010


- Demonstration
- Validation of best practices
- Load-tests to failure

External Post-Tensioning



SR 51 Clairton Blvd over Lewis Run Concrete T Beam Repair

SR 51 Clairton Blvd over Lewis Run

SR 51 Clairton Blvd over Lewis Run Continued

Before

www.dot.state.pa.us

After

Commercial Street Bridge Pier

Before

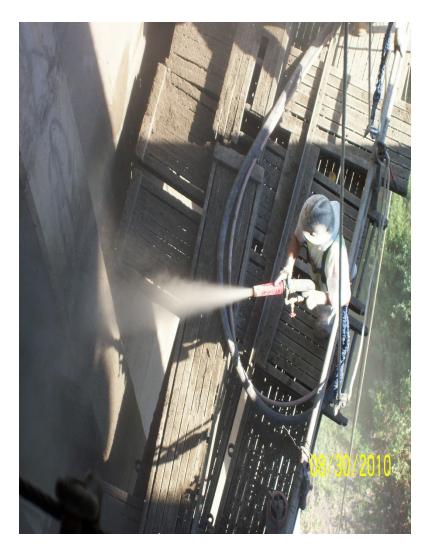
Commercial Street Bridge Arch

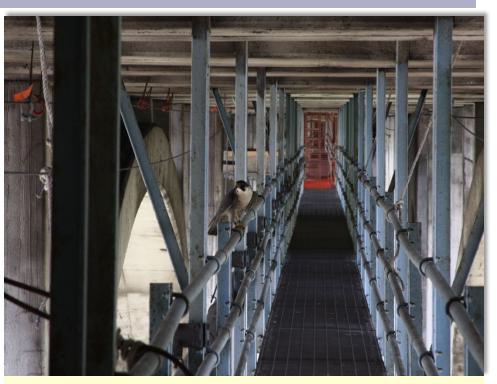
After

Commercial Street Floor Beam

After cleaning/ Epoxy Coating Steel

- Extra Concrete Repairs
- Falcons





Falcons Roosting on Westinghouse Bridge

Falcon with her eggs

Falcon guarding her eggs

Falcons Roosting on Westinghouse Bridge

Falcon sitting on the bridge

Falcons Roosting on Westinghouse Bridge

Baby Falcons being banded by the Game Commission

Baby Falcons returned to their nest after banding

McKees Rocks Bridge Sidewalk

- Original Scope
- Hidden Problems
- Results

McKees Rocks Bridge Sidewalk

NORTH END OF SPAN 11 AT PIER 11 NOTE: 2' X6" WIDE SPALL IN WEST SIDEWALK

SECTION OF DOWNSTREAM SIDEWALK HAS CRACK & IS HEAVED CAUSING A 1 FT RISE & CREATING TRIPPING HAZARD @ VERTICAL MEMBER 19

MINOR TRIPPING HAZARD OF DOWNSTEAM SIDEWALK @ VERTICAL MEMBER 6

McKees Rocks Bridge ALCOSAN SIPS

McKees Rocks Bridge ALCOSAN SIPS

McKees Rocks Bridge ALCOSAN SIP Removal

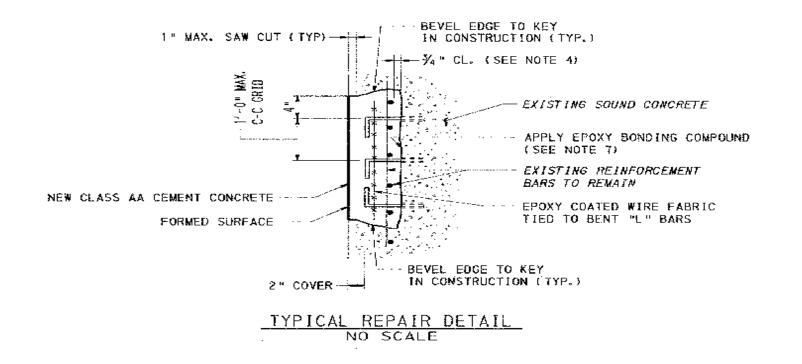
Treatment of Substructures

- Typical Repair replace deteriorated concrete with new concrete with forming /pouring or shotcrete (Noblestown Road and Neville Island).
- Removal with Hydrodemo and repair with shotcrete (Liberty tunnel)
- Adding Galvanic Anodes to Rebar to slow the rate of corrosion
- Application of sealers after repair or after original placement
- Application of Zinc Spray versus sealers to reduce corrosion rates (Poplar Avenue)
- Application of Epoxy Resin to seal piers

District Executive Memo for Substructure Repair

Highlights of DEM 2010 - DEM002D

- Proper pre-bid inspection at the right time to the extent and depth of spalls and delamninations.
- Proper quality in plans (bump inspection quantity by 25-50%)
- Proper construction inspections


Substructure Treatments

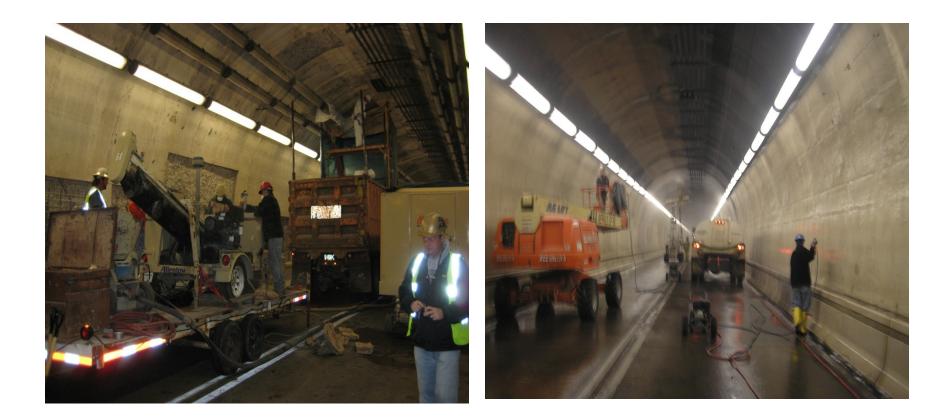
- Typical concrete spall detail (Noblestown Road)
- Construction sequencing
- Shotcrete (Noblestown Road)

Noblestown Piers Continued Typical Detail

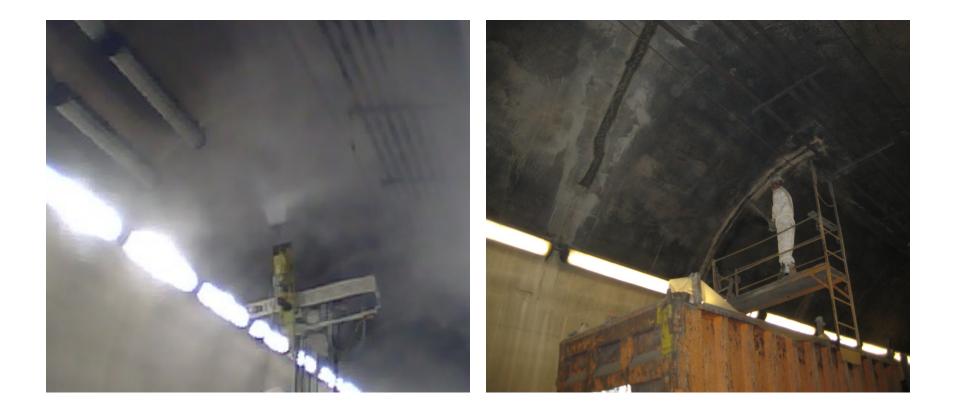
Noblestown Piers

Noblestown Continued

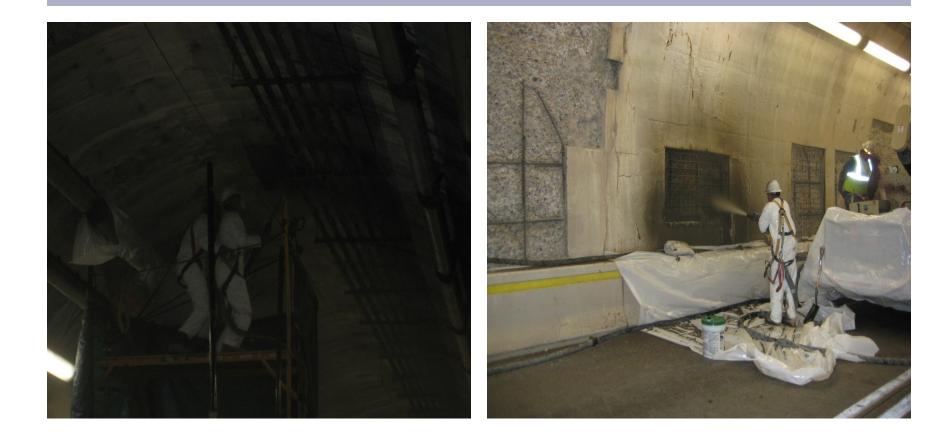
Shotcrete repair



- Standard Concrete Repair
- Hydro Demo Repair
- Latest Photos



Liberty Tunnel Hydrodemo & Latex of Ceiling



Liberty Tunnel Hydrodemo

Liberty Tunnel Shotcrete of Ceiling

In Bound on the South Hills Side



In Bound on the South Hills Side near the center of the tunnel

In Bound on the City Side

In Bound City Side

Dry and Wet Shotcrete Process

- Shotcrete is not a special product.
- It is a method of placing a concrete mix.
- Special additives can modify the properties and durability of the final product such as adding polymer fiber reinforcement.
- Shotcrete may be applied to surfaces using a dry or wet-mix method.
- The wet-mix concrete method consists of portland cement and aggregate premixed with water before the pump pushes the mixture though the hose.
- Additional compressed air is added at the nozzle to increase the velocity of the mixture.
- In the dry-mix process, compressed air propels a premixed blend of portland cement and damp aggregate through the hose to the nozzle. Generally, the shotcrete gun nozzle is held at a right angle 2 to 6 feet from the surface. In most cases, shotcrete can be deposited in the required thickness in a single application.
- For some vertical and overhead applications and for some smooth finishes, shotcrete must be applied in 1 to 2-inch (2.5 to 5 cm) thick layers.
- Once shotcrete is placed, it can be finished in a variety of methods, including natural, flash coat finish, broom finish, various rough trowel finishes, and smooth steel trowel finish. After finishing, the concrete must be cured for a period of at least seven days.

Dry and Wet Shotcrete Process Continued

- The application of shotcrete can be done successfully with either dry or wet method. The dry-mix shotcrete process tends to be more favorable for lower volume placements. **We have been favoring the dry method lately.**
- It is also a more flexible method, allowing for more frequent relocations of equipment.
- Equipment is more easily cleaned at the end of the placement. The nozzle man must exercise great care in adding the necessary amount of water while shooting.
- The certified nozzle man does not have to be concerned with controlling the water addition. The wet shotcrete mixture has a limited "pot-life."
- Proper placement is the most important element in achieving good shotcrete results.
- Most defects that occur in shotcrete are due to poor placement.
- The nozzle man's goal is to achieve adequate compaction and good encasement of the reinforcement (if present) with no entrapped rebound or hardened overspray.

New Technologies

- Hockey Pucks-Tornado and SR 60
- Performance to date?
- Zinc Spray (Poplar Avenue)

New Technologies Continued

Finished Concrete Repair using Galvanic Anodes (18-33B) Tornado Bridge

OLECTIONS 2

