

Design and Quality Assurance of CFRP Repair of Concrete Pressure Pipes

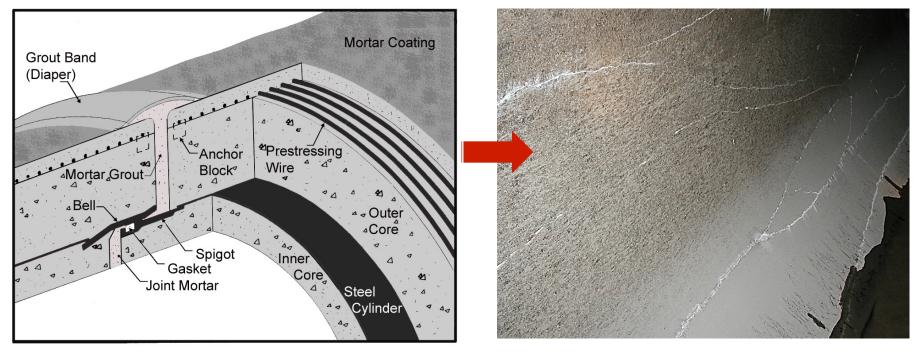
Rasko Ojdrovic Murat Engindeniz Mehdi Zarghamee

ICRI Fall 2011 Convention, Cincinnati, OH

13 October 2011

Objective

- Outline the design approach and present QA requirements for repair of PCCP with CFRP liners.
- Introduce recent developments in the area (Draft AWWA Standard, the WaterRF Project).
- Highlight consequences of lack of proper QA.



Outline

- Introduction
- Design Criteria
- Draft AWWA Standard and the WaterRF Project
- QA Requirements (prior to, during, and after construction)
- Case Histories
- Conclusions

Distressed Pipe

PCCP

CFRP Liners

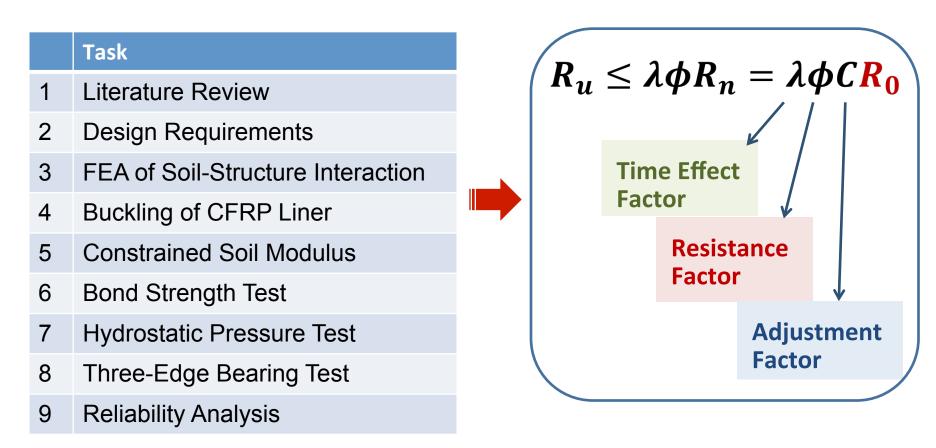
- No need for external access
- >15 year track record
- Draft AWWA Standard in progress

28 in. pipe

CFRP Design Approach

- Consider degradation level of host pipe
- Stand-alone versus composite design (with inner core)
- Use LRFD

Circumferential Design

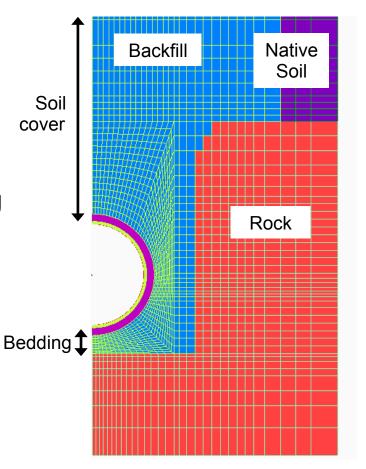

Limit StateLoadsCFRP
RuptureInternal pressure +
External gravity
loadsBucklingExternal loadsBucklingExternal loadsDebondingEmpty pipe under
external loads

Longitudinal Design

Limit State	Loads
CFRP Rupture	Internal pressure (Thrust, Poisson) + Temperature
Debonding	Internal pressure (Thrust, Poisson) + Temperature
Buckling	Temperature

The WaterRF Project

Objective: Develop all necessary technical background for an LRFD-based AWWA Standard.

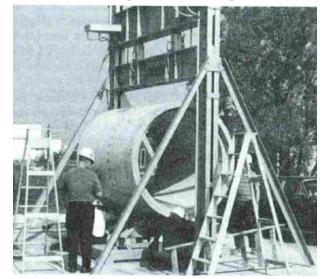

The WaterRF Project – Analysis

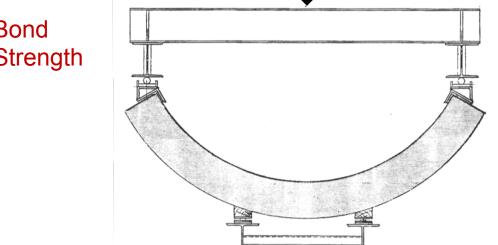
Account for:

- CFRP-pipe-soil interaction for different soils
- Installation condition
- Construction sequence
- Concrete cracking and CFRP debonding

Determine:

- Load on pipe
- Failure pressure
- Shape factor, D_f
- Rerounding coefficient, R_c
- Debonding behavior




The WaterRF Project – Testing

Hydrostatic

Three-Edge Bearing

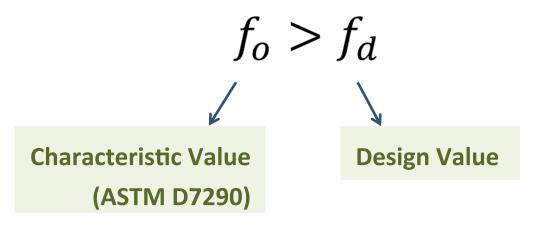
Bond Strength

QA Requirements

- Prior to Construction
 - Parties' Experience, Materials, Inspection
- During Construction
 - Testing, Installation, Independent Inspection, Curing
- After Construction
 - Inspection, Testing

Involved Parties

Prior to Construction


- **Owner**: Provides pipe design data and design loads (working and transient pressure, vacuum, live, etc.)
- **Engineer**: Designs repair, responsible for QA/QC of repairs.
- **Manufacturer**: Supplies a complete CFRP repair system. Must provide all required material data and supporting test results and installation guidance, and must license and train installers.
- Installer: Installs CFRP according to drawings and specifications; qualified by manufacturer and experienced in confined space installation of CFRP.
- **Special Inspector**: Engineer's representative who monitors and documents all phases of construction for compliance with repair drawings and specifications and directs corrective actions.
- **Testing Agency**: Qualified testing laboratory independent from the Installer.

Laminate Qualification

Short-term

Property	ASTM Test Method	Min. No. of Tests
Longitudinal tensile strength and modulus	D3039	10
Longitudinal compressive strength and modulus	D6641	10
Longitudinal flexural strength and modulus	D790	10

Engindeniz et al. 2011

Laminate Qualification

Durability

	ASTM		Test	Min.	Required % Retention
	Test		Duration	No. of	of Characteristic
Durability Test	Method	Test Condition	(hrs)	Tests	Tensile Properties
Water resistance	D2247 E104	100% RH, max $(T_{max}^{(2)}, 125^{\circ}F)$	1,000 3,000 10,000	10 10 10	90% 85% 80%
Temperature resistance	D3045	$\max(T_{\max}^{(2)}, 125^{\circ}F)$	1 000	10 10 10	90% 85%

⁽¹⁾ This table should be extended as necessary to include all environmental conditions defined by the Owner (e.g., exposure to sea water, sewage, chemicals).

⁽²⁾ T_{max} = maximum operating temperature defined by the Owner.

Engindeniz et al. 2011

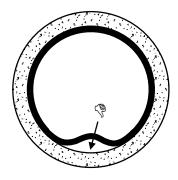
Creep Rupture

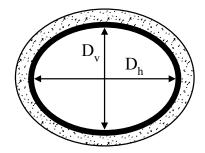
 $(f_{SL})_{50} > 0.60 f_{ST}$

Resin Qualification

- Primer
- Tack Coat
- Thickened Epoxy
- Impregnating Resin
- Top Coat
 - $T_g > T_{max} + 40^{\circ}F$
 - Long-term water absorption <2%
 - Curing performance documented with test data
 - Temp. vs. % cure
 - % cure vs. hardness
 - NSF 61 compliance
 - No VOC

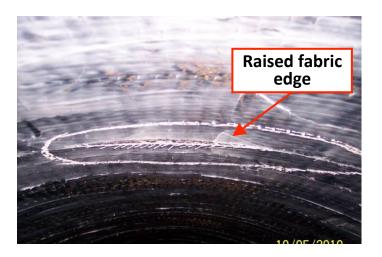
Inspection of Host PCCP


Identify:


- Cracks
- Surface irregularities (waviness imperfection)
- Ovality (another imperfection)
- Quality of inner core concrete

Affects:

- Design approach (standalone vs. composite)
- Surface preparation
- Buckling strength of CFRP liner
- Special details at cracks



Independent Inspection

During Construction

- Engineer's or Owner's representative
- Full time
- To verify all construction activities, including:

Independent Inspection

- Condition of host pipe
- Surface preparation (minimum ICRI CSP3 required)
- Testing of mockup panels (bond strength) for onsite verification of construction quality
- Material storage, preparation, and application
- Application (details, timing)
- Control of air flow, temperature, and humidity
- Termination details
- Preparation of witness panels
- Post-installation inspection
- Curing (85% cure before service)

Mockup Panel Testing

- Minimum (3) 2 ft x 2 ft panels
- Prepared and tested by Installer (ASTM D4541)
- Witnessed by Inspector
- >200 psi required for at least 3 tests per panel
 - Failure mode may affect design approach!

Installation

(1) Prepare Surface

(4) Impregnate Carbon Fabric

(2) Apply Primer

(5) Lay Fabric

(3) Apply Tack Coat and Thickened Epoxy

(6) Apply Top Coat



Special Details

End Termination Detail

Curing

- >85% cure required prior to refilling the pipeline
 - Proper work schedule
 - Curing temperature and duration (consider elevated temperature)
- Confirm with test data provided by Manufacturer
 - Temperature vs. % cure
 - % cure vs. hardness (Shore D or Barcol)

Witness Panel Testing

After Construction

- Prepared by Installer
 - 3 panels minimum
 - 1 layer of CFRP
- Witnessed by Inspector
- Tested by the Independent Testing Agency (ASTM D3039)
- Evaluated by Engineer

Case Histories

Over 40 successful projects in the last 3 years ...

- Constellation Energy Brandon Shores Power Plant
 - Lined (55) 102 in. PCCP under the switch yard (88,000 sq.ft application) in 22 days.
 - Lining of additional (51) 102 in. PCCP coming up.
- Miami-Dade Water and Sewer Authority
 - Ongoing CFRP repair program on more than (70) 48 in. to 96 in. PCCP.
 - Utility able to perform repairs by minimizing impact on community.
- APS Cholla Power Plant
 - Lined (20) 66 in. PCCP (22,000 sq.ft application) in 10 days.
 - Now planning additional CFRP repairs.

Lack of QA (by Others)

Conclusions

- Internal CFRP repair of pipes requires consideration of loads, limit states, and quality control procedures that are much different from those for other structures.
- Owners should be active participants in the repair process to ensure selection of qualified engineers, materials, installers, inspectors, and testing agencies.
- Manufacturers should be aware of the material qualification requirements, complete the missing data (e.g., creep, durability), and train Installers of their material.
- Contractors should be aware of all QA procedures for material preparation, installation, and curing.
- Lack of experience and quality control may lead to failure of CFRP liner.
- A design and installation standard is currently under development by AWWA.

Questions?

Rasko P. Ojdrovic, Ph.D., P.E.

rpojdrovic@sgh.com (781) 907-9231

SIMPSON GUMPERTZ & HEGER

Engineering of Structures and Building Enclosures