Restoration and Monitoring of a Thin Lightweight Reinforced Concrete Parking Slab

Pawan R. Gupta

Restoration

Project - Pegasus Apartments

Outline

History/Challenges on the Project
 Repair Options Considered
 Mockup/Testing (Phase I)
 Long Term Monitoring Results
 Repair Implementation (Phase II)
 Conclusions

Headquarters for General Petroleum Constructed in 1949

History of the Project

Originally Constructed in 1949 □ Major Renovation/Seismic Upgrade 2002 >Level 2 and 3 Converted to Parking >Levels 3-13 converted to apartments Condition Assessment October 2011 > Full depth concrete floor slab replacement ■ Level 2 – 1,450 sf Cost ≈ \$250,000 Level 3 – 14,500 sf Cost ≈ \$2,500,000 Added to Historical Buildings Register in 2004

Typical Slab Cracking

Full Depth Repair Locations

Full Depth Spall

Full Depth Spalt/07/2013

Punch Thrus 05/03/20

Utility Access Ports 2012

Structural Floor System

- Light weight concrete 95pcf used in floor slab
- □ 3" thick slab
- □ Joist/beam spans 20'-2"
- □ Joist/beam spacing 3'-6"
- Top of joist/beams 2½" below finished floor (beam/joist embedded in concrete by ½")
- Joists have a clip angle and rebar in the concrete slab
- Rebars: Fy=40 ksi /WWF mesh

Typical 3rd Floor Slab

Steel Joists

WWF Reinforcing Mesh

OFT

2018

Spacing

10

3" Thick Slab

Concrete Properties

GENERAL NOTES

- I All footings shall rest on firm, undisturbed natural soil at the elevations indicated. Character of soil sand and gravel with some clay.
- 2-Soil pressure based on the recommendation of the Foundation Engineers report subject to the approval of the Los Angeles City Bidg Dept.
- 3- All concrete below First Floor Froming shall be Grade B and have a minimum compressive strength of 3000%sq.in. at 28 days with a water cement ratio of 6 gals/sack of cement.
- 4- All other concrete shall be Grade A with light weight aggregate and have a minimum compressive strength of 2500" sq. in. at 28 days with a water cement ratio of 6% gals./ sock of cement. Light weight concrete shall weigh not more than 95"/cu.ft.
- 5. Gunite shall be mixed in proportions of I sack of cement to not more than 4½ cu, ft of light weight aggregate and not more than 3 gals, of water per sack of cement at the discharge of nozzle. Gunite shall have a minimum compressive strength of 3000% sq. in. at 28 days and weighing not more than 110% cu.ft.
- 6-Reinforcing steel shall be new billet, deformed, intermediate grade conforming to A.S.T.M. designation No. AIS 39. Reinforcing bars shall lap 40 diameters at splices and dowels, unless otherwise detailed.
- 7. Cement shall be a standard grade of Portland Cement conforming to A.S.T.M. designation C150-41.

 $f'_c = 2,500 \text{ psi}$ w/c = 0.6 w = 95 pcf Very Light Weight Concrete

Loading Conditions

Slab Cracking Caused by Wheel Loads

Repair Options Considered

Demolish/Replace Slab

- Demolish Slab
 - Saw-cut and Remove Slab
 - Hydro Demolition
- ➢ Replace Slab
 - Form New Concrete Slab
 - Use Stay in Place Metal Forms (Deck)
- Repair/Strengthen Existing Slab

Demolition Alternatives - Saw Cutting

Demolition Alternatives – Hydro-demolition

3rd Floor Plan

Challenges/Limitations

- Building is occupied
 - Noise/dust abatement
 - Minimum disruption to businesses
 - Preserve finishes in entrance lobby and restaurant
 - >Work hours
- Lead Paint
- Small equipment access only
- Debris Removal (Congested Downtown Area!)
- Historic Buildina

First Floor Architectural

Limitations 2nd Floor

- No access to the floor from underside
 - Entrance lobby & leasing office with high end finishes
 - Disruption in leasing operations
 - Disruption to tenants of the building
 - Kitchen of the Daily Grill in the area of slab replacement
 - Extensive slab cracking/shoring issues prevent partial slab replacement options

Fire Proofing

M&E Utilities Attached to 3rd Floor

Lobby/Leasing Area

04/10/2012

04/10/2012

Fiber Reinforcement

Advantages

- No Shoring required
- Minimal surface prep. required
- Minimizes the possibilityof leakage
- Easy/Quick
- Should stiffen the slab considerably
- Reduce the possibility of future surface cracking

Limitations

- Not as durable as a new slab
- May only provide temporary fix (depending on the condition of exist. concrete)
 - Design is not fire rated (would need to replace FRP after fire event)

Slab with CFRP Strengthening Only

Strengthening with CFRP Fabric+ CFRP Bars

Rehabilitation Approach

- Repair the cracks and spalls on the floor slab
 Reinforce a small portion of the slab with CFRP
 - > Option 1: CFRP Sheets at the top
 - Option 2: CFRP Sheets at the top + CFRP rods embedded in the slab
- Monitor the slab for a few months to evaluate the performance of the two repair methods
 Select repair method for the whole slab

Repair Areas

Crack Repair

Π

Rout & fill cracks > 1/32"

09/17/2012

Gravity Fill Cracks with Epoxy

LOSPAR

Sikadur 22Sikadur 52

Routed and Repaired Cracks on the Floor

Flood Coat of Cracks

□ Sikadur 52 Fill Cracks < 1/32"

Full Depth Repairs

Carbon Fiber Rod Installation

Carbon Fiber Reinforced Polymer (CFRP) Installation

10/04/2012

Broadcast Topping for Traction

Structural Monitoring

Instrumentation Layout

SENSOR PLACEMENT ON JOISTS Strain Gages and Accelerometers

Comparison of Accelerometer with LVDT

Loading Vehicle

•

- 2007 Saturn Vue Greenline FWD Hybrid SUV
- Weight: 3500lbs
- Weight distribution (% front / rear): 59/41
 - Wheel base: 106.6in / 2707mm

Deflections over Time - Panel 1

Middle Joist Deflections

Deflections over Time - Panel 2

The George E. Brown, Jr. Network for Earthquake Engineering Simulation

How is Load Sharing Calculated

Base Condition Results - Panel 1 (Unrepaired)

Table of Load Sharing Results

	Tests used		From Deflection Panel 1		From Strain Panel 1		From Deflection Panel 2		From Strain Panel 2	
-			Joist 1	Joist 3	Joist 1	Joist 3	Joist 4	Joist 6	Joist 4	Joist 6
Test 04	3-7	Baseline	50%	49%	37%	28%	45%	47%	48%	35%
Test 06	4-7	Routing	39%	54%	36%	35%	42%	49%	46%	34%
Test 11	4 6-8	Repaired	63%	63%	60%	47%	53%	61%	55%	48%
Test 15	2468	Week 2	64%	59%	60%	50%	51%	53%	55%	47%
Test 17	3579	Month 2	62%	59%	47%	43%	50%	59%	50%	50%
Test 19	1 2 4-8	Month 3	61%	62%	46%	44%	52%	58%	52%	46%

Comparison of Results

30%

20%

10%

0%

Baseline Routing Repaired Week 2 Month 2 Month 3

Joist 6

Interpretation of Results

- Deflections Reduced by almost 40% (2.5 mm – 1.4 mm)
- Improved Load Sharing between Joists
- The behavior appears to have stabilized after the first month

Results/Recommendations

Evaluated Two options

CFRP Sheets

CFRP Sheets +CFRP Rods

Both options have similar behavior

Recommended using CFRP Sheets only for the rest of the floor

Phase II Repairs

FRP Application

Adhesion/Bond Testing

06/04/2013

Finished Repairs

06/20/2013

Questions!

