

Structure

- ✤ Built in 1965
- Separate entry & exit single helix ramps
- Two way slab supported by beams and columns

Design

Design

- ☆ Study performed in 1981 including chloride testing
 - results indicated high chloride content
 - approximately 20% delaminated deck surface
 - deck repairs performed for an extended 5 year service life
- Further study performed in 1986 including half cell potential
 - deck repaired with silica fume patches performed for an extended 5 year service life
- ☆ 1991 all ramp deck surfaces coated
- ☆ Further deck patches performed in 2004
- Deemed too expensive to maintain and closed in 2007

21 m 1 m m	Kanas Ger Tastas Lacou	
	-	
max m		25
	뮾	5Ξ
	=	55
414 M	#	32

DRILL SITE	DEPTH(in.)	CHLORIDE	CONTENT
Hole #1	0-1	1322	bbæ
	1-2	1176	ppm
	2-3	523	ррш
Hole #2	0-1	1026	מת מ
	1-2	952	DDO
	2–3	967	ррш
Hole #4	0-1	837	DDm
	1-2	554	DDm
	2-3	463	ppm
Hole #5	0-1	565	າກຕາ
	1-2	424	DDM
	2-3	443	DDO
	DRILL SITE Hole #1 Hole #2 Hole #4 Hole #5	DRILL SITE DEPTH(in.) Hole #1 0-1 1-2 2-3 Hole #2 0-1 1-2 2-3 Hole #4 0-1 1-2 2-3 Hole #5 0-1 1-2 2-3	DRILL SITE DEPTH(in.) CHLORIDE Hole #1 0-1 1322 1-2 1176 2-3 2-3 523 Hole #2 0-1 1026 1-2 952 2-3 2-3 967 967 Hole #4 0-1 837 1-2 554 2-3 Hole #5 0-1 565 1-2 424 2-3 443

- ☆ Study performed in 1981 including chloride testing
 - results indicated high chloride content
 - approximately 20% delaminated deck surface
 - deck repairs performed for extended 5 year service life
- Further study performed in 1986 including half cell potential
- deck repaired with silica fume patches performed
 for extended 5 year service life
- ☆ 1991 all ramp deck surfaces coated
- ☆ Further deck patches performed in 2004
- Evaluated and closed in 2007

- ☆ Study performed in 1981 including chloride testing
 - results indicated high chloride content
 - approximately 20% delaminated deck surface
 - deck repairs performed for extended 5 year service life
- Further study performed in 1986 including half cell potential
- deck repaired with silica fume patches performed for extended 5 year service life
- ☆ 1991 all ramp deck surfaces coated
- ☆ Further deck patches performed in 2004
- Evaluated and closed in 2007

- ☆ 2016 Study REPAIR OR DEMOLISH?
- ☆ Approximately 35% of deck surfaces delaminated
- Conventional repair and cathodic protection evaluated for increased life span and minimized yearly maintenance costs
- Demolition costs budgeted to be twice that of repair and cathodic protection
- Decision made to proceed with repairs and cathodic protection

- Temporary handrail required for construction
- New steel handrail designed to meet code for reopening

Ħ

Repairs could only be performed on one ramp at a time

8

Height and large full depth patches required extensive shoring and forming design

Ð

Corrosion of Steel in Concrete

>INITIALLY, STEEL IN CONCRETE IS PROTECTED FROM CORROSION:

- pH > 11 FORMS PROTECTIVE FILM ON SURFACE
- CONCRETE COVER ACTS AS SEMI-BARRIER
- STEEL IS SAID TO BE PASSIVATED

BUT OVER TIME THE PROTECTION OF STEEL IS DESTOYED BY

- MOISTURE
- OXYGEN
- CHLORIDES FROM DE-ICING SALTS

Corrosion of Steel in Concrete

• **RESULTS OF CORROSION:**

- DELAMINATION OF CONCRETE
- EASY PATH FOR NEW CHLORIDES
- SECTION LOSS OF REBAR
- STRUCTURAL WEAKENING
- STRUCTURAL FAILURE

Corrosion of Steel in Concrete

- ANODE (corrosion occurs, chlorides)
- CATHODE (protected area)
- ELECTROLYTE (concrete)
- METALLIC PATH (rebar)

REDUCTION $O_2 + 2H_2 O + 4e^{-} ---> 4OH^{-}$

Problems with Traditional Repairs

Cathodic Protection (CP)

- Corrosion control solution for chloride contaminated concrete
- A small DC current flows from an anode material, installed in the structure, to the rebar
- Rebar becomes the cathode and is protected
- Impressed current cathodic protection (ICCP) uses a power supply – rectifier
- Sacrificial cathodic protection uses galvanic anodes

What's a Good Candidate for CP?

 Existing, salt contaminated concrete, or corrosive environment

- Bare reinforcing steel
- Structurally sound and resilient
- History of concrete repairs (but not too many)
- High volume structure or critical use structure
- Hollow slabs where the deck is integral
- Parking garages below a building (lateral bracing)
 Long-term owner
- Owner with history of using Cathodic Protection

Titanium Based Anodes (ICCP)

Extensive track record (> 10,000 concrete structures protected worldwide)
 Minimum 40-year anode life expectancy
 Grade 1 titanium substrate
 Mixed-metal oxide (MMO) sintered coating
 Available in mesh and ribbon form
 Popular choice for horizontal decks (bridges, parking garages, etc.)

Design and Layout

Installation

Ground wire connection to the rebar (cathode)

• Reference electrode installed in each zone. Used to monitor system performance

Installation

• Titanium MMO anode mesh placed on scarified and repaired concrete deck

• Spot weld current distributor strip across rows of anode mesh

Installation

- LMC concrete overlay placed over anode mesh.
- Conduit and wiring from spiral ramp are run to electrical room that houses the rectifier and remote monitor units for the complex.
- System energized and adjusted for optimum performance and corrosion protection

