Electrochemical Corrosion Mitigation for Reinforced Concrete Bridges

Chris Ball Vector Corrosion Technologies

Status of US Bridges

- About 1/4 of Bridges are classified as Structurally Deficient or Functionally Obsolete
- \$140 billion required to repair all bridges
- Average age is 43 years

Electrochemical Corrosion Mitigation Systems for Concrete

- Galvanic Protection
- Impressed Current Cathodic Protection
- Corrosion Passivation using Electrochemical Treatments
 - Chloride Extraction
 - Re-alkalization

Viaduct Rehabilitation

- 1.5 miles long built in early 1970's
- 66 large hammerhead piers
- Assessment indicated various conditions along the structure
 - Wide spread chloride contamination to level of the steel
 - Localize spalling
- 40+ year life extension would not be achieved in current condition

- Replace concrete deck
- Maintain steel box girders and supporting structures
- Piers with widespread chloride
 - 26 piers received Electrochemical Chloride Extraction
- Piers with localized concrete spalling
 - patch repairs with alkali-activated embedded galvanic anodes for local protection
- Application of acrylic coating for improved appearance and protection

Electrochemical Chloride Extraction

- Address the cause of the problem
- Passivates active corrosion
- Temporary treatment process
- No system left in place to maintain
- Miniminal aesthetic impact
- Long service life is achieved
 - 1989 first application in North America

Electrochemical Chloride Extraction (ECE) From Salt Contaminated Concrete

Embedded Galvanic Anode

Chloride Contaminated Concrete

Chloride-Free Patch

Anode Galvanically Protects Surrounding Rebar

Embedded Galvanic Anodes are tied to reinforcing steel at edge of repairs.

Substructure Repair

- Problem
 - Structure built in 1963
 - Previous repairs in early 2000's
 - Chloride content, concrete damage and corrosion potentials varied significantly among piers
 - Substructure rehabilitation to equal expected service life of new deck
 - Preference for galvanic protection due to resource availability for ICCP monitoring.

Area with Concrete Damage	Repair Method
Less than 20%	Concrete patching and sealer
Greater than 20%	Concrete removal and jacketing
	and sealer
< 20% concrete damage and	Concrete patching and Galvanic
> 20% of sound surface area	Corrosion Control with
with high corrosion potentials	Activated Arc Spray Zinc

Prestressed Concrete Girders

- Problem
 - Chloride-induced corrosion
 - Limited area (beam ends only)
 - Concrete damage
 - Section loss of steel
 - Repair, protection and strengthening required

- Concrete patch repair
- Strengthening with surface bonded fiber reinforced cement (PBO)
- Galvanic protection with surface applied zinc sheet anodes

Bridge Bent Protection

- Problem
 - Reinforced concrete columns and beams
 - Located under leaking joints
 - Chloride contamination and active corrosion
 - Long term protection required for critical structure

- Isolated concrete repairs
- Impressed current cathodic protection
 - Inert conductive ceramic point anodes for ICCP placed into drilled and grouted holes
 - AC Power, Transformer / Rectifier, associated wiring, conduit

Impressed Current CP

- Outside power
 source required
- High level of control
- Long term protection with regular system monitoring

Permanent DC Power Supply

Installation of Anode System Bridge Substructure

Bridge in Marine Environment

- Problem
 - Prestressed concrete piles
 - Failed epoxy grouted FRP jackets
 - Chloride contamination from tidal and atmospheric exposure
 - Severe deterioration of reinforced concrete pier caps
 - High temperatures and high humidity

- Removal of epoxy grouted jackets
- Installation of galvanic protection for prestressed piles
- Repair and strengthening of pier footers incorporation impressed current cathodic protection
 - Associated power supplies, cabling and monitoring systems

Pile Cap Repairs

- Problem
 - Small municipal roadway bridge over brackish water
 - Localized concrete damage on pile cap in low cover areas
 - Budgeted for maintenance repairs

- Concrete Patch Repair
- Embedded galvanic anodes to provide localized protection to repair areas

Summary

- Many bridges in the United States and other countries are in need of repair.
- Electrochemical corrosion mitigation technologies can be utilized to economically extend the life of reinforced concrete bridge structures.

Electrochemical Corrosion Mitigation for Reinforced Concrete Bridges

Thanks!

