Strengthening of Concrete Members using Fabric Reinforced Cementitious Matrix

Presenters:

J. Bret Turley, M.S., P.E. Engineer | Composite Strengthening Systems

Omaha, Nebraska

November 7-9

Rick Gruye Business Segment Manager | Composite Strengthening Systems

Outline

- Review of Reinforced Concrete Strengthening Methods
- Introduction to Fabric Reinforced Cementitious Matrix Systems
- FRCM Application Process & Considerations
- FRCM Design & Testing
- Project Profile

November 7-9

Review of Concrete Strengthening Methods

November 7-9

Reinforced Concrete

Potential Reasons for Strengthening:

- Corrosion / Deterioration
- Change of Use / Loading
- Structural Modifications
- Seismic Retrofit
- Construction Errors / Omissions

November 7-9

Omaha, Nebraska

Traditional Strengthening Methods

Bonded Steel Plate

Section Enlargement

Drawbacks

- × Accessibility
- × Labor intensive
- Increase dead load supported by structure

Omaha, Nebraska

× Encroaches on useable space

November 7-9

Strengthening using Composites

Composites are relatively new to the construction market

FRP Laminate

(Pre-cured carbon laminate is adhered to building with epoxy paste)

FRP Fabric

(Carbon / eGlass fabric is saturated in epoxy and then wrapped around column)

Why use Composites?

- Lightweight
- High tensile strength
- Low impact
- Conform to existing shapes
- Resistance to corrosion
- Ease of installation
- Cost-effective alternative

November 7-9

Omaha, Nebraska

A New Externally Bonded Composite

FRP Fabric

FRP Laminate

FRCM

November 7-9

Omaha, Nebraska

CONCRETE REPAIR INSTITUTE

Fabric-Reinforced Cementitious Matrix

(cement-like)

(mortar)

FRCM is in the same family as FRP, but it differs in its installation and application benefits.

INTERNATIONAL CONCRETE REPAIR

2018 Fall Convention

FRCM Components

Fabric-Reinforced Cementitious Matrix (FRCM) Systems

2018 Fall Convention

FRCM Placement

2018 Fall Convention

Benefits - FRCM v. FRP

- High tensile strength
- Low impact
- Conform to existing shapes
- Fast installation
- Cost-effective solution
- Matches substrate
- Elevated temperature
- Provides protective barrier
- Repairs as it adds strength (minimal surface prep needed)

November 7-9

Omaha, Nebraska

INTERNATIONAL CONCRETE REPAIR INSTITUTE

FRCM Application Process & Considerations

November 7-9

FRCM Components

Cementitious Matrix

Carbon-Fiber Grid

November 7-9 | Omaha, Nebraska

Prior to application:

Repair deterioration per ICRI Guideline No. 310.1R

- Remove delaminated concrete
- Clean/coat exposed steel
- Inject/seal cracks

November 7-9

Prior to application:

Concrete surface profile should be between CSP 6-9 (ICRI)

This means you can repair surface inconsistencies as you add strength.

Fig. 6.6: CSP 6 (medium scarification)

Fig. 6.7: CSP 7 (heavy abrasive blast)

Fig. 6.8: CSP 8 (scabbled)

Fig. 6.9: CSP 9 (heavy scarification rotomilled)

INTERNATIONAL CONCRETE REPAIR

2018 Fall Convention

Prior to application:

Be sure the surface has been wet to ensure a saturated surface-dry (SSD) condition per ICRI guidelines.

November 7-9

 Apply first layer of cementitious matrix (CSS-CM), being sure to completely coat area at ¼" to ½" thick

November 7-9

Grid Alignment

Why so important?

- Grid is designed to resist load in tension
- 5 degree tolerance (1 inch per foot slope max)
- Avoid kinks, folds, waves

November 7-9

Omaha, Nebraska

2.

November 7 9 | Omaha, Nebraska

 Apply second layer of cementitious matrix at ¼" to ½" thick

November 7-9

- 4. Screed and trowel to desired finish
- 5. Allow for full cure by keeping wet for 3-5 days after installation
- 6. Finish coat as desired

November 7-9

Multiple-Layer Grid Installation

Repeat steps 2 and 3 as specified

2. Place grid into wet matrix and embed using a trowel or float

 Apply additional layer(s) of cementitious matrix at ¹/₄" to ¹/₂" thick

November 7-9 | Omaha, Nebraska

Overlapping and Staggering

Overlapping is determined by drawings and specifications, minimum 12" overlap

November 7-9 | Omaha, Nebraska

Traditional Shotcrete vs. FRCM

Traditional Shotcrete Repair

FRCM Repair

November 7-9 | Omaha, Nebraska

Traditional Shotcrete Repair	FRCM Repair
 Specialty contractor to tie rebar cage Specialty contractor to spray shotcrete 	 Same contractor installs FRCM system
Rebar installation time-intensive	 Carbon-fiber grid installs in minutes, saving time and money
Additional 1.5"–3" shotcrete cover over rebar	 ✓ No steel = no cover requirements. Only ≈1" volume change in total repair.
Additional weight needs to be calculated into total building loads	 Adds negligible weight to structure
Shotcrete typical psi at 4,000	 Cementitious matrix is a high-performance mortar with psi at 7,500

Grain Concrete Silo Needs Repair

- ✓ Concrete on the side of the grain silo has deteriorated
- ✓ Damage was caused by grain abrasion

November 7-9

Omaha, Nebraska

 ✓ Repair and additional strengthening is needed

2018 Fall Convention

Shotcrete Repair Method

- ✓ Considerable volume change results in grain displacement
- ✓ More subcontractors needed
- ✓ Repair takes longer to installer (+28 days until fully cured)

November 7-9

FRCM Repair Method

- Low impact = little to no grain displacement
- ✓ Cementitious matrix matches the base material (benefit when compared to FRP)
- ✓ Quick installation time.

November 7-9

Omaha, Nebraska

Where can I use FRCM?

Project Types

For projects with large, overhead and vertical surface areas

2018 Fall Convention

November 7-9

Project Types

For projects where traditional FRP is excessive

2018 Fall Convention

For projects that require surface repair in addition to strengthening

INTERNATIONAL CONCRETE REPAIR

2018 Fall Convention

For projects that require higher level of heat resistance

2018 Fall Convention

For projects that can't afford a significant reduction in useable space

2018 Fall Convention

For projects that requires water to be transmitted

2018 Fall Convention

Ideal Application: Tunnels and Mines

2018 Fall Convention

November 7-9

FRCM Design & Testing

Design Standards

American Concrete Institute (ACI) 549.4R-13: Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Strengthening Concrete and Masonry Structures
562-16: Code Requirements for Evaluation, Repair, and Rehabilitation of Concrete Buildings
AC434: Acceptance Criteria for Masonry and

International Code Council Evaluation Service (ICC-ES) **AC434**: Acceptance Criteria for Masonry and Concrete Strengthening Using Fabric-Reinforced Cementitious Matrix (FRCM) Composite Systems

Omaha, Nebraska

2018 Fall Convention

November 7-9

Existing Capacity Demands Exposure Coefficients

Serviceability

November 7-9

Omaha, Nebraska

ACI 562-13 Equation 5.51:

$$(\phi R_n)_{\text{existing}} \ge (1.2S_{\text{DL}} + 0.5S_{\text{LL}})_{\text{new}}$$

meaning...

ACI 562-13 Equation 5.51:

Unstrengthened member should be ≥ 120% of service dead load and 50% of service live load

APPENDIX B—DESIGN LIMITATIONS						
	Concrete			Masonry		
Parameter	Flexure	Shear	Axial	Out-of-plane	In-plane	
E _{fe} or E _{fd}	Less than 0.012	Less than 0.004	Less than 0.012 and ε_{ccu} less than 0.01	Less than 0.012	Less than 0.004	
ф	0.9 to 0.65 based on ε _t	0.75	0.9 to 0.65 based on ε _t	0.6 for flexure 0.8 for shear	0.75	
fz:/fza	0.2 to 0.55 based on fiber	NA	NA	NA	NA	
Allowable maximum enhancement*	50 percent	50 percent	20 percent	URM: 6000 lbf./ft (87.6 kN/m); Reinforced masonry: 50 percent	50 percent	
Allowable maximum enhancement is above existing capacity. ACI 562-13 supersedes when limits are lower than as listed in this table.						

2018 Fall Convention

Existing Capacity Demands

Exposure Coefficients

Serviceability

November 7-9

Omaha, Nebraska

- ✓ Ambient and surface temperatures between 41°F and 86°F
- ✓ Wet-cure completed FRCM application

INTERNATIONAL Concrete Repair INSTITUTE

Existing Capacity Demands

Exposure Coefficients

Serviceability

November 7-9

Omaha, Nebraska

The service stresses in the steel must be checked for the desired performance.

ICC-ES AC434 Testing for Code Report

ACCEPTANCE CRITERIA FOR MASONRY AND CONCRETE STRENGTHENING USING FIBER-REINFORCED CEMENTITIOUS MATRIX (FRCM) COMPOSITE SYSTEMS (AC434)

1.8 INTRODUCTION

1.1 Pupper The jurgoes of this acceptance offensis is to establish regularements for acceptation of Ben-relational committees marks (PLD) comparison encomes structures, in ICC Evaluation Service, ILC (PCC-SS), evaluation, reports unger the 2012 and 2000 International Building Code[®] (BIC), The Besle of morphone INI EC-Science 10.111.

The reason for the development of this criteria is to The reason for the development of this criteria is to provide guidelines for the evaluation of alternative strengthening methods for masony and concette structural elements, where the codes do not provide regularments for testing and determination of structural capacity, reliability and serviceability of these products.

1.2 Scope: This otheria applies to passive fiber-1.2 Boope: This other applies to passive Soe-reinforced carenet/lisus matrix (FRCM) composite systems used to strengthen existing masonry and concrete structures. Properties evaluated include FRCM material properties: axid, fecural and strear capacities of the FRCM system; performance of the FRCM system under environmental exposures; performance under exposure to fire conditions; and structural design procedures. 1.3 Referenced Codes and Standards:

1.3.1 2012 and 2009 International Building Code[®] (BC), International Code Council

1.3.2 ACI 318-11 (2012 IBC), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute.

1.3.3 ACI 318-08 (2009 IBC), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute.

1.3.4 ASCE 41-00: Selamic Rehabilitation of Existing Buildings, American Society of Civil Engineers, 1.3.5 TMS 402-11/ACI 530-11/ASCE 5-11 (2012 IBC), Building Code Requirements for Masonry Structures. American Concrete Institute.

1.3.8 TMS 402-08/ACI 530-08/ASCE 5-08 (2009 ISC), Building Code Regurements for Masonry Structures, American Concrete Institute.

1.3.7 ASTM C 138-10b, Standard Test Method for Density (Linit Weight), Yield, and Air (Gravimetric) of Concrete, ASTM International. 1.3.8 ASTM C 157-08. Standard Test Method for

Length Change of Hardened Hydraulic Mortar and 1.3.8 ASTM C 387/C 587/A-11, Sta

Specification for Packaged, Cry, Contineed Materials for Morlar and Concrete, ASTM International. 1.3.19 ASTM C 947-03 (2009), Banderd Test Method for Flexural Properties of Thin-Section Glass-Fiber-Reinforced Concente (Using Simple Seam with Third-Point Loading), ASTM Memachani.

1.3.11 ASTM C 1583/C 1583/M-04**. Standard Test Method for Tensile Strength of Concerte Surfaces and the

1.4.4 Yielding Load and Displacement: Load and displacement at which longitudinal steel minforcement of

Bond Strength or Temaile Strength of Concrete Repair and Overlay Materials by Direct Temaion (Pull-off Method), ASTM International. 1.3.13 ANTHON 1141-08 (2008). Streeters Burghes for Preparation of Substitute Ocean Water, ASTM International.

1.3.13 ASTM D 2247-11. Standard Practice for Testing Water Resistance of Coatings in 100% Relative Humidity, ASTM International.

1.3.14 ASTM D 2344/D 2344/H-00 (2006), Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM

1.3.15 ASTM D 3155-07, Standard Test Method for Strength Properties of Adhesives in Shear by Tension Loading of Single Lap-Joint Laminated Assembles, ASTM 1.3.14 ASTM E 4-10, Standard Practices for Force.

Verification of Testing Machines, ASTM International 13.17 ASTM E 83-15a, Standard Practice for Verification and Cassification of Extensioneters, ASTM International

1.3.18 ASTM E 104-82 (2007), Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions, ASTM International. 1.4 Definitions:

1.4.1 Design Values: The FRCM composite system's load and deformation design capacities that are based on load and resistance factor design (strength design) method.

1.4.2 FRCM Composite Material: A fiber-reinforced comentitious matrix (FRCM) is a composite material consisting of a sequence of one or more layers of cement-

based matrix reinforced with fibers in the form of open grid (mesh). When adhered to concrete or masonry shucharal members, they form an FRCM system. Components are: 1421 Resolved Baisboraneed Ook Com

1.4.2.1 Binutural Reinforcement Grid: Open gid (mesh) of shands made of fibes (i.e., aranid, alkal restatur (AR) glass, caston, and polyastpherelene benobisokatole (PRO), consisting of primary direction (PO) and secondary direction (ISO) stands connected perpendicularly. The typical strand second of PO and SO strands is less than one inch (25.4 mm)

14.2.2 Coment-based Matrix: A polymer-modified coment-based binder (montar) that holds in place the structural reinforcement grids in FRCM composite 1.4.3 Cracking Load and Displacement Load and

displacement at which the moment-curvature relationship of the mascory or concrete member first changes slope or at which the cracking moment as defined in ACI 318, Section 9.5.2.3, or TMS 452, Section 3.3.5.5, is mached.

INTERNATIONAL CONCRETE REPAIR INSTITUTE

Structural Testing: Beams

2018 Fall Convention

Structural Testing: Column Testing Results

INTERNATIONAL CONCRETE REPAIR

2018 Fall Convention

Quality Control and Assurance

Daily Inspection

- Date and time of installation
- Ambient temperature, relative humidity, and weather conditions
- Substrate surface temperature
- Surface preparation method and ICRI concrete surface profile

2018 Fall Convention

November 7-9

- Surface cleanliness description
- Grid batch numbers
- Matrix batch numbers, mix ratios, and mixing times

Field Testing

Pull-Off Test

(ASTM C1583)

- Adhesion test should exceed 200 psi
- When failure at grid-matrix interface, strength computed on net matrix area should be at least 400 psi

November 7-9

Lab Testing

Mortar Cubes Test

(ASTM C109)

- Brass cubes filled with CM
 - Test at 7 and 28 days
- Compressive strength of 9,000 psi at 28 days

November 7-9

Lab Testing

Tension Test with Witness Panels

(AC434 Annex A)

- Only required in strengthening applications
 - 2 per day, twice daily
- Panels sent to third-party lab for testing

November 7-9

Specification

Specifying FRCM is very similar to specifying FRP

FRCM becomes another option to specify when:

- Lower levels of strengthening required
- Elevated temperatures preclude use of FRP
- Excessive moisture precludes use of FRP
- Concrete repair is also required in addition to adding strength

November 7-9

Project Profile Freeborn County Grandstand

2018 Fall Convention

November 7-9 | Omaha, Nebraska

0			0			0	•0	0	0	0	0
0							۲	0	0		
0		0	0		0	0	0	0	8	0	0
0	\Rightarrow		0	0	0	0	0			0	0
	O	0	0	0	õ	0	0	0	0	0	0
0	0			0	0	O	0	O			
		0							0		
		0							0		
		0							0		

RISER JOIST WITH WOOD BRACKET (SB LOCATIONS), SEE PAGE 3 FOR FROM DETAIL.

EXPOSED LONGITUDINAL BARS (16 LOCATIONS), SEE PAGE 3 FOR FROM DETAIL

NOTE: AT REPAR LOCATIONS ADJACENT TO HALL OR OTHER OBSTRUCTION, SEE SECTION A TYPE 1 BEAM AT LEFT FOR FROM STRENGTHENING

PLAN VIEW

2018 Fall Convention

How Can Manufacturers Help?

Feasibility Studies	Work with EOR to determine if Composites are an option
Budget Estimates	Engage local trained contractors to provide ROM pricing
Specifications	Fine-tune to meet project-specific requirements
Drawing Details	Develop preliminary sketches & shop drawings
Calculations	Provide for EOR's reference during submittal review

November 7-9 | Omaha, Nebraska

Thank You

J. Bret Turley, M.S., P.E. Engineer | Composite Strengthening Systems bturley@strongtie.com | 614 / 850 - 4029 SIMPSON Strong Tie

www.strongtie.com/css

Omaha, Nebraska

November 7-9

Rick Gruye Business Segment Manager | Composite Strengthening Systems rgruye@strongtie.com | 763 / 777 - 1193

