AT 32 STORIES, IT'S ALL ABOUT THE BOND!

Scott Hemphill

Micro Structure of Cement

- Chemical composition of cement clinker
 - Tricalcium aluminate, C₃A
 - Liberates heat during the early stages of hydration
 - Tricalcium silicate, C₃S
 - Largely responsible for Portland cement's initial set and early strength gain
 - Dicalcium silicate, C₂S
 - Responsible for strength gain after one week

After a day and a half of excellent presentations and only 30 minutes from "Happy Hour" I think we have all reached technical saturation.

Steel

We thought we knew why steel was so strong.....

.....We now understand where steel gets its strength

ICRI 2015 Spring Convention

In Concrete Restorations "dark Ages" we thought we understood Bonding.....

.....We now understand how the repair gets its strength

TECHNICAL

Guideline No. 310.2R-2013 Copyright Q2013 International Concrete Repair Institute

Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair

Simple Engineering

ICRI 2015 Spring Convention

Three Types of Stresses

The Real Strength of Concrete

Compressive strength = F_c' Standard concrete = 2,500- 7,500 psi Repair mortars = 5,000- 12,000 psi Tensile / Shear strength of concrete/mortars Only 10-15% of F_c'

Accepted minimal bond strength = 200 psi!

Forces acting on discrete areas!

The actual reaction area is not as much as you think!

Macro-Micro Structure of Concrete

Concrete Tensile Strength Put Into Perspective

SEA SPONGE = +/-100PSI 4,000 PSI CONCRETE = +/-450PSI

Figure 13. SEM micrograph of the aggregate/paste interface in the (J) samples (CPI-S-32 cement/5% bottom ash/sand) after 28 days of aging.

Simple Concept

Preparation Triad for a Quality Bond

- 1. Surface preparation
- 2. Cleaning of the substrate/surface
- 3. Application of the repair material or product

Surface Preparation

The goal is to provide a sound horizontal and vertical macro surface for the loads to react against.

Removal of unsound or damaged material
 Saw cutting and detail chipping
 Profiling and leveling for coatings

Surface Preparation

Determine the level of preparation needed and the most efficient and practical methodology

	Concrete Surface Profile										
Surface preparation method	CSP 1	CSP 2	CSP 3	CSP 4	CSP 5	CSP 6	CSP 7	CSP 8	CSP 9	CSP 10	
Detergent scrubbing											
Low-pressure water cleaning											
Grinding											
Acid etching											
Needle scaling											
Abrasive blasting											
Shotblasting											
High- and ultra-high-pressure water jetting											
Scarifying											
Surface retarder (1)											
Rotomilling											
Scabbling											
Handheld concrete breaker											

Surface Preparation

Verify that the level of surface preparation has been achieved.

Utilize Concrete Surface Profile (CSP) chips for clarity and accuracy.

Cleaning of the substrate/surface

- Removal of damaged or "bruised" material left from surface preparation work
 - Abrasive Blasting
 - High pressure water blasting
 - Needle scaling

Cleaning of the substrate/surface

- Micro surface preparation to open "pores" in the concrete
 - Abrasive blasting
 - Acid etching

Cleaning of the substrate/surface

Removal of contaminates

- Detergent scrubbing
- Power washing
- Oil free compressed air

Application of the repair material

Explicitly follow manufacturers directions

- Storage and handling
- Mixing instructions
- Application procedures
- Curing

Remember the stool!

Cutting corners or neglecting one of operations does not mean a third less bond capacity...... It more than likely means no bond capacity!

Simple Math

$\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$ $\frac{1}{3} + \frac{1}{3} + 0 \neq 1$

What is the real cost of a High-Rise bond failure?

RE-MOBILIZING FOR ONE PATCH?

What is the real cost of a High-Rise bond failure?

A TARNISHED PROFESSIONAL REPUTATION?

What is the real cost of a High-Rise bond failure?

PUBLIC SAFETY?

Lets examine the consequence of "minor" High-Rise bond failure

□ 4"x 8"x 1.5" piece of polymer repair mortar

- 43 in³ in volume
 - About the size of a prime rib
- At 150 lbs/ft³ it weighs 3.75 lbs
 - About the weight of a bag of sugar

STANDARD GARAGE REPAIR

32 STORY HIGH-RISE REPAIR

STANDARD GARAGE REPAIR

- Height = 10.0 ft
- Speed at impact = 17 mph
- Energy at impact = 36.9 ft-lb

- 32 STORY HIGH-RISE REPAIR
- □ Height = 320.0 ft
- Speed at impact = 97.5
 mph
- Energy at impact = 1,624
 ft-lb

STANDARD GARAGE REPAIR

Professional tennis serve +/- 45 ft-lbs of energy

32 STORY HIGH-RISE REPAIR

.44 Magnum handgun +/- 1,100 ft-lbs of energy

A4 MAG. CARTRIDGE FEDERAL PREMIUM 240-GR. HYDRA-SHOK JHP	VIL e 15' (5.P.S.) 1461 Avs. 10 So	ENERGY GFT-LB5J 1,137	GROUP SIZE IN INCHES SMALLEST LARGEST AVERAGE			
			1.51	2.26	1.95	
HORNADY CUSTOM 300-GR. XTP	1234 Avc. 8 So	1,014	1.76	2.26	2.01	
WINCHESTER RAZORBACK XT 225-GR. BPHP	1366 Avc. 18 Sp	932	1.45	1.95	1.88	
AVERAGE EXTREME SPRI	EAD	() () () () () () () () () ()			1.95	

MUZZLE. HANDGUN ACCURACY WAS MEASURED FOR FIVE CONSECUTIVE, FIVE-SHOT GROUPS FIELD FROM & BENCH REST, RANGE TEMPERATURE: 68" F. HUMIDITY: 20%. ABBREMATIONS: BPHP (REVELED PROFILE HOLLOW POINT), JHP (JACKETED HOLLOW POINT),

SD (STANDARD DEVIATION), XTP (XTREME TERMINAL PERFORMANCE).

STANDARD GARAGE REPAIR

32 STORY HIGH-RISE REPAIR

Take the extra time to do it correctly!

Just how important is a good Bond to your success and bottom line?

Remember, Its all about the **Bond!**

This six-man battle was no contest. Brosnan and Moore were equally popular, and current incumbent Craig scored high. But Connery karate-chopped his way to the top.

ROGER MOORE 12%

DANIEL CRAIG 27%

TIMOTHY DALTON 3%

PIERCE BROSNAN 12%

GEORGE LAZENBY 1%

Thank You for your time and attention!