## Committee 140 Life Cycle Performance & Cost

Paul Tourney - Chair Peter DeNicola

"You Call It Sustainability, We Call It Concrete Repair"

#### **Committee 140 - Life Cycle Performance & Cost**

#### MISSION

Provide industry guidance for decisions based on both the service extension and economic impact of concrete repairs.

#### GOALS

Develop technical guideline on managing the serviceability of concrete structures through a "cradle to grave" approach using preventative maintenance systems and quality concrete repairs.

## Committee 140 - Life Cycle Performance & Cost Current Membership:

Paul Tourney Pete DiNicola Dale Campbell Jason Dunster Kevin Earley Eric Edelson Greg Gilmor Fred Goodwin Joshua Hollis Graeme Jones

Richard McGuire Mike Parker Chris Perego Matt Sherman

#### **Consulting Members:**

Frank Apicella James McDonald Jessi Meyer

#### **Committee 140 - Life Cycle Performance & Cost**

**Expanded Objectives:** 

- Use excellent work efforts of other ICRI committees.
- Develop tools for owners and engineers to promote and justify better concrete repairs.
  - Decision Tree on "Cradle to Grave" of structures and the maintenance options.
  - Guidelines for use of the decision tree system.
  - Provide a series of project case studies for demonstration of SLP / LCCA for optimal management of concrete structure assets.
- Liaison with ACI and ISO Committees to build consensus.

## Importance of Concrete Repair Sustainability

| Type of Structure | #New  | #Existing | Grade |
|-------------------|-------|-----------|-------|
| Highway Bridges   | 1,000 | 600,000+  | С     |
| Highway Roads     | Х     | 100X      | D-    |
| Parking Garages   | 400   | 25,000+   | С     |
| Dams              | 10    | 4,000     | D     |

## Importance of Concrete Repair Sustainability

| Type of Structure | #New  | #Existing | Grade |
|-------------------|-------|-----------|-------|
| Highway Bridges   | 1,000 | 600,000+  | С     |
| Highway Roads     | Х     | 100X      | D-    |
| Parking Garages   | 400   | 25,000+   | С     |
| Dams              | 10    | 4,000     | D     |

**#1** Build new structures to last longer!

# # 2 Maintain and repair existing structures to significantly extend the time to subsequent repair.

The backlog numbers are against us!!

#### **Balance of Asset Management of Existing Structures:**







## Life Cycle Costing

Net Present Value (NPV)

NPV = Today Cost /(1 + Effective Interest Rate (i)) \*\*(years from today)

- What is the \$\$\$ needed to put away today to take care of facility for the expected service life?
- Related to the opportunity cost. General rules.
  - Dollars spent in the future is lower cost than dollars spent today.
    - Higher the interest rate the greater the premise.
  - Dollars NOT spent today will result in high Life Cycle Costs.

#### Life Cycle Cost Analysis (LCCA)



#### Life Cycle Cost Analysis (LCCA)



 $NPV_{Life} = [$U/(1+i)^{T1} + $V/(1+i)^{T2} + $W/(1+i)^{T3}] + ....$ 

 $NPV_{Today} = [$U + $V/ (1+i)^{T_3-T_2} + $W/ (1+i)^{T_4-T_3}] + \dots$ 



TIME

















### Life Cycle Cost Comparison

|        | NPV (Life) | NPV (Today) |
|--------|------------|-------------|
| Case 1 | 0.168      | 1.024       |
| Case 2 | 0.115      | 0.700       |
| Case 3 | 0.089      | 0.146       |

