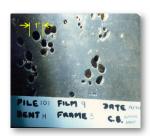


Inception

»LPG Trestle, Ju'Aymah, Saudi Arabia

Trestle constructed in 1980


»Precast concrete cylinder piles

LPG Trestle, Ju'Aymah, Saudi Arabia

»Routine inspection in 1983 (3 years after construction) revealed severe marine borer attack

»616 piles affected

LPG Trestle, Ju'Aymah, Saudi Arabia

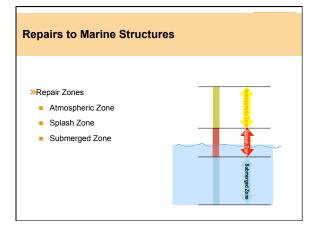
- »The owner required that the repair method...
- >>Would eradicate the existing borers
- >>Would repair the damage done by the borers
- >>Would not be susceptible to future borer attack
- >>Would stay in place and continue to provide protection for 20+ years without any maintenance

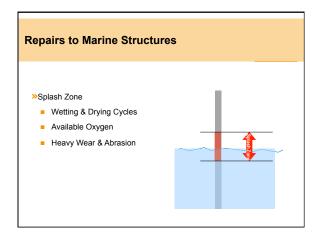
LPG Trestle, Ju'Aymah, Saudi Arabia

The 616 piles were encapsulated using the advanced pile encapsulation technique in 1984

Repairing Marine Structures

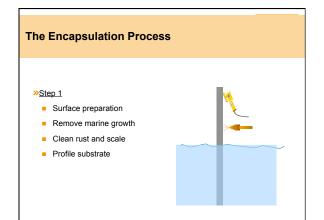
»Marine Structures


- Submerged Piles
- Submerged Piers
- Seawalls
- Dams / raceways
- Offshore Platform Supports


The Need for Repair and Protection

»Marine Environment

- Highly Corrosive Environment
- Susceptible to Rot
- Attack from Marine Organisms
- Damage from Scour and Abrasion



Repairs to Marine Structures

»Repair Challenges

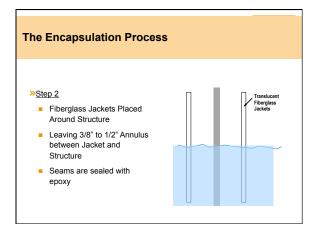
- Durability of Materials for Repair / Protection
- Adequate Performance of Materials for Repair / Protection
- Proper <u>Placement</u> of Materials for Repair / Protection

The Encapsulation Process

»Step 1

Sandblasting

Pneumatic Rotary Grinder



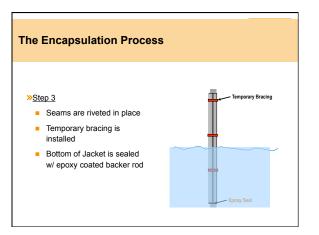
The Encapsulation Process

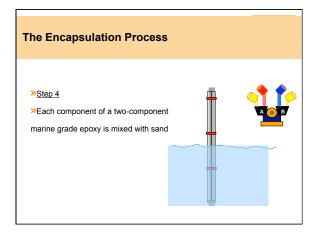
»Step 1

- Sandblasting
- Pneumatic Rotary Grinder

Purpose Designed FRP Jackets

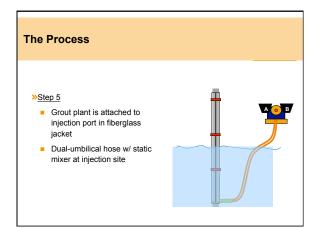
»Step 2


- Appropriately sized FRP Jackets Delivered to Site
- Polymer Stand-offs
- Seam adhesive applied on deck


Purpose Designed FRP Jackets

»Step 2

 Jackets set in place around pile



Epoxy Grout Infill Properly Placed

»Step 4

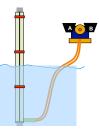
- Plural component grout plant
- Part A & Part B mixed with sand in each hopper

Epoxy Grout Infill Properly Placed

»<u>Step 5</u>
Downstream mixer

Epoxy Grout Infill Properly Placed

»Step 5


 Fluid sand-filled epoxy grout is dispensed out of the mixer

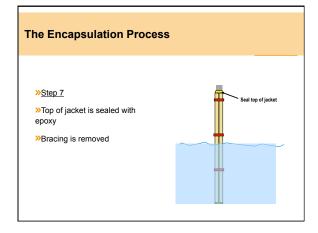
The Encapsulation Process

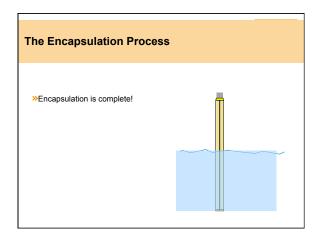
<u>Step 6</u>
 Epoxy grout is pumped into annulus

 Water in the annulus is displaced and expunged out of the top of the jacket

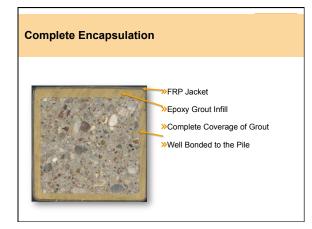
Epoxy Grout Infill Properly Placed

»Step 6


>Grout is pumped into the annulus>Water is displaced above grout


»Grout progress is monitored

Epoxy Grout Infill Properly Placed



»Step 6 Water is expunged out of the top of the jacket

Complete Encapsulation

»Epoxy Grout is pumped under pressure

»Grout penetrates into cracks and voids in the substrate

Lake Pontchartrain Causeway, New Orleans, Louisiana

»Pile Encapsulation

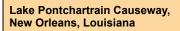
- Started in 1988
- 26 mile long bridge

 54" diameter concrete cylinder piles

Lake Pontchartrain Causeway, New Orleans, Louisiana

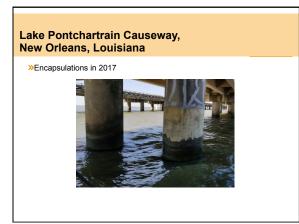
»Pile Encapsulation

 Encapsulations soon after completion in 1989



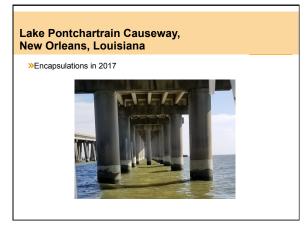
Lake Pontchartrain Causeway, New Orleans, Louisiana

Pile Encapsulation


» Encapsulations in 2002

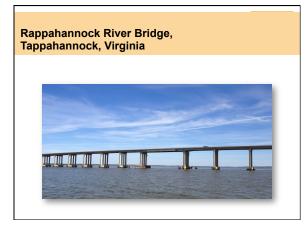


»Bond testing 13-year old encapsulations





Lake Pontchartrain Causeway, New Orleans, Louisiana


»Encapsulations in 2017

Rappahannock River Bridge, Tappahannock, Virginia

»1993

»RC Piers Showing Corrosion and Spalling

»Encapsulations all Above Water

Rappahannock River Bridge, Tappahannock, Virginia

≫1993

»RC Piers Showing Corrosion and Spalling

»Encapsulations all Above Water

Rappahannock River Bridge, Tappahannock, Virginia

»Jackets placed over spalled areas
»No patching was done

Rappahannock River Bridge, Tappahannock, Virginia

15

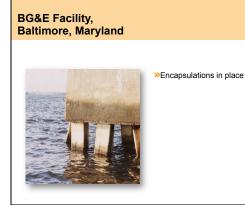
BG&E Facility, Baltimore, Maryland

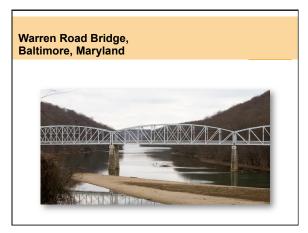
»Badly deteriorated H-Piles

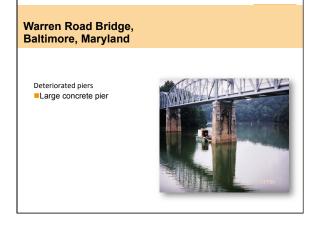
BG&E Facility, Baltimore, Maryland

>Encapsulate 44 "H" Piles>Completed in 1993

BG&E Facility, Baltimore, Maryland


Corroded steel section replaced with new structural steel


Steel channels bolted and spliced onto existing piles


BG&E Facility, Baltimore, Maryland

»Jackets sized to H-Pile Profile

Warren Road Bridge, Baltimore, Maryland

Pier Encapsulation:

Large concrete pierJacket Fabrication

Warren Road Bridge, Baltimore, Maryland

Large concrete pier

Des Joachims Hydroelectric Dam Deep River, Ontario, Canada

»Tailrace Structure

- Sits on the Ottawa River between Ontario and Quebec
- 200-km Upstream from Ottawa, ON
- 8 power generation units

Challenges

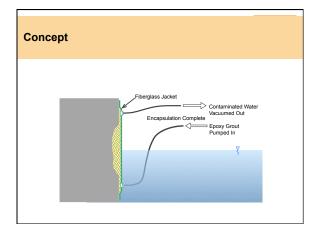
Tailrace Structure

- Structure built in 1940'sDamage to tailrace from
- scour and abrasion

Challenges

»Damage to Piers

- Loss of section
 12" to 18" of section loss in some instances
- Reinforcing steel exposed



Challenges

»Repair Procedure

- Restore loss of section
- Protect against future abrasion damage
- Protect the downstream ecosystem
- Minimize dam shutdown time to less than 10-days

Implementation

FRP Panels

- Face of peirs encapsulated using FRP panels
- Thicker than usual panels (1/4") were used due to severity of scour and abrasion
- Panels hoisted into place

Implementation

»Panels Installed

- Panels are anchored into the face of the wall at appx 12"o.c. EW
- Stiffeners are placed to resist grouting pressure

Implementation

Grouting Operation
 Grout pumped into annular space

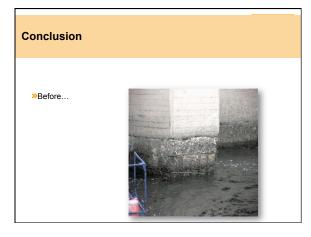
- Expunged water and excess grout reclaimed by vacuum pumps installed on upper ports
- Contaminated water disposed of separately to minimize environmental impact

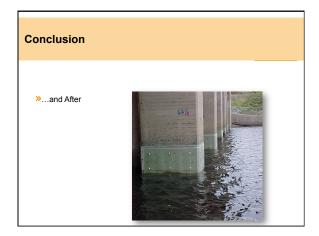
Des Joachims Hydroelectic Dam Deep River, Ontario, Canada

»Encapsulation in Place

Completed without

- dewatering
- Only 7-days of shutdown time for the generators




Testing

»Core Samples

- Excellent bond to backwall
- Good grout consolidation
- No cracking in grout from exotherm

Des Joachims Hydroelectric Dam Deep River, Ontario, Canada

»...and In Service

Gandy Bridge Tampa Bay, FL USA

2010

» Condition Survey

» First Encapsulated in 1987

LPG Trestle, Ju'Aymah, Saudi Arabia

33 years later...

The repair and protection via Advanced Pile Encapsulation remains in place and continues to provided protection without any maintenance

