Underwater Seepage Crack Repair Using Polymeric Repair Material – Field Demonstration

Shannon Harrell, P.E. Bureau of Reclamation

Central Arizona Project- Tucson Aqueduct Reach 2

- Site conditions
 - Ambient Air

Central Arizona Project- Tucson Aqueduct Reach 2

- Canal Characteristics
 - Canal Depth 12 ft.
 - Width at the bottom 14 ft.
 - Slope of Canal Walls 1 ½:1
 - Concrete Lining
 - 3" thick unreinforced
 - 3000 psi @ 28 days Comp. Str.

Goals for the Project

- Seal seepage cracks while in service.
- Determine if premixing the grout with water in an injection nozzle would help to initiate curing reaction.
- Determine if preheating the premix water can reduce set time.

2017 Fall Convention | November 15-17 | New Orleans | L

Equipment

 Water heater and generator for heating premix water.

2017 Fall Convention | November 15-17 | New Orleans, L

Equipment Cont.

 Airless paint sprayer and hoses for pumping grout and premix water.

2017 Fall Convention | November 15-17 | New Orleans, LA

Equipment Cont.

• Commercial diver

• Mobile command center

017 Fall Convention | November 15-17 | New Orleans, L

Equipment Cont.

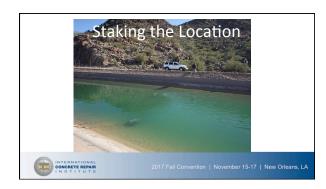
• Injection Assemblies

2017 Fall Convention | November 15-17 | New Orleans, L.

Method

- Products
 - M#1 Manufactured product 1
 - M#2 Manufactured product 2
- Test Sections
 - Approximate 2 ft. sections.
 - Crack width varied from $\frac{1}{2}$ " to 1".
 - Some cases had up to ½" of offset

Method Cont.


• M#1 Test Cases

- Test 1: Single Component Nozzle- no mix water
- F-assembly with mix water

 - Test 2: 80 degree F. mix water
 - Test 3: 90 degree F. mix water
 - Test 4: 100 degree F. Mix water Test 5: 110 degree F. mix water
 - Test 6: 120 degree F. mix water
 - Test 7: 180 degree F. mix water
- M#2 Test Cases
 - Test 1: Single Component Nozzle- no mix water
 - F-assembly with mix water

 - Test 2: 80 degree F. mix water
 Test 3: 100 degree F. Mix water
 Test 4: 120 degree F. mix water
 - Test 5: 180 degree F. mix water

M#1 Results

Test 1- Single component nozzle- no mix water

- · Injection observations-
 - Slow reaction time
 - Product flowed out of the crack before it adhered to the crack
- 24 hour Visual Inspection

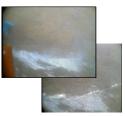
 - Little penetrationLarge amount of product running down face of canal.

M#1 Results Cont.

Test 2 - F-assembly w/ 80 deg. F. mix water

- · Injection observations-

 - Quick reaction time
 Appeared to infiltrate and adhere to the crack
- 24 hour Visual Inspection
 - Good expansion
 - Good adhesion to crack



M#1 Results Cont.

Test 3 - F-assembly w/ 90 deg. F. mix water

- · Injection observations-
 - Faster reaction time than 80 deg. F. water.
 - Less product flowed out of the crack.
- 24 hour Visual Inspection

 - Good expansionGood adhesion to crack

M#1 Results Cont.

Test 4 - F-assembly w/ 100 deg. F. mix water

- · Injection observations-
 - Faster reaction time than 90 deg. F. water.
 Less product flowed out of the crack.
- 24 hour Visual Inspection

 - Product appeared gelatinousLittle strength and adhesion

M#1 Results Cont.

Test 5 - F-assembly w/ 110 deg. F. mix water

- · Injection observations-
- - Flow in the canal began to increase
 Very little product flowed out of the crack
- 24 hour Visual Inspection
 - Product appeared gelatinous
 - No gaps
 - Good penetration and adhesion
 - Chunks could be easily broken off

M#1 Results Cont.

Test 6 - F-assembly w/ 120 deg. F. mix water

- · Injection observations-
 - Product filled crack better than 110 deg. F. test.
 Diver liked 120 deg. F. water the best.
- 24 hour Visual Inspection

 - Good penetration
 No gaps
 Product felt solid and not gelatinous

M#1 Results Cont. Test 7 - F-assembly w/ 180 deg. F. mix water Injection observationsExcessive amount of product flowed out of the cracks 24 hour Visual Inspection Poor penetration Product felt gelatinous.

M#2 Results

Test 1 – Single component nozzle – no mix water

- · Injection observations-
- Little to no runoff of the product
- 24 hour Visual Inspection
 - Good penetration
 - No gapsGood adhesion
 - Final product felt firm but flexible

M#2 Results Cont.

Test 2 – F-assembly 80 deg. F. mix water

- Injection observations-
- Increase in runoff of product down canal face
 Product became stringy as it cured
- 24 hour Visual Inspection
 - Good penetration
 - Good adhesion
 - Final product felt firm but flexible

M#2 Results Cont.

Test 3 – F-assembly 100 deg. F. mix water

- · Injection observations-
 - Quick reaction time
 - Some runoff down the face of the canal Product became stringy as it cured
- 24 hour Visual Inspection
 - Moderate penetration - No gaps
 - Final product had a gooey bond and setup
 Low adhesion

M#2 Results Cont. Test 4 – F-assembly 120 deg. F. mix water Injection observationsQuick reaction time Similar runoff as test 3 Product became stringy as it cured 24 hour Visual Inspection Poor penetration Low adhesion

M#2 Results Cont. Test 5 – F-assembly 180 deg. F. mix water Injection observations Quick reaction time Less penetration than all the other tests 24 hour Visual Inspection Poor penetration Good adhesion

Conclusions

- Both grouts performed better when premixed with water in the injection nozzle prior to injection.
- Premixing with heated water reacted the grout faster.
 - $\boldsymbol{\mathsf{-}}$ Gave grout sufficient time to Adhere to crack surface.
 - Less product waste.

2017 Fall Convention | November 15-17 | New Orleans, L

Conclusions Cont.

- M#1 performed optimally when mixed with water at 120 deg. F.
- M#2 performed optimally when mixed with water at 80 deg. F.

2017 Fall Convention | November 15-17 | New Orleans, LA

Conclusions Cont.

- 180 degree F. mix water caused near instantaneous particle curing that did not adhere well in the crack for either product.
- The diver preferred M#2 over M#1 because it had better adhesion, penetration, and felt firmer.

2017 Fall Convention | November 15-17 | New Orleans, L.

Acknowledgements

- Geoff Keller Bureau of Reclamation Phoenix Area Office
- Chris Duke Bureau of Reclamation Water Conveyance Group
- Aaron Ashcroft Central Arizona Project
- Kurt Hankes Arizona Commercial Diving Services

2017 Fall Convention | November 15-17 | New Orleans, L

Shannon Harrell, P.E. sharrell@usbr.gov 303-445-2370

Matthew Klein, P.E., Ph.D. mjklein@usbr.gov 303-445-2368

QUESTIONS?

2017 Fall Convention | November 15-17 | New Orleans, LA