Date of Presentation ICRI 2022 Spring Convention

Arctic Sealant Technology & Innovation

Marie Borong VP R&D Sika Corporation Eric Muench Director Product Management Sika Corporation

The ideas expressed in this ICRI hosted webinar are those of the speakers and do not necessarily reflect the views and opinions of ICRI, its Board, committees, or sponsors.

BUILDING TRUS

The Commercial Sealant Market - \$3.5 Bio

USA Building & Construction Demand (2020)

The Sealant Market – Global Trends

2020-2023 NORTH AMERICAN MARKET REPORT

Several global trends across a diverse range of markets

Trend	Innovation	
Shift from mechanical fasteners to adhesives	Bonding/fastening dissimilar materials of design NVH, Corrosion protection, crash worthiness (load management and distribution).	
Increased use of composites, plastics, and light metal alloys	 Aerospace (Boeing Dreamliner 787) Automotive (2025 CAFÉ Standards) Implementation of carbon fiber and bonding dissimilar materials Resilient veneer-laminated wood flooring 	
Demand for alternative, sustainable energy sources	Wind Energy Long-term, durable solar panels	
Globally aging population	Comfortable adult incontinence products	
Electric vehicles and vehicle light-weighting	Engineered Structural Adhesives Thermally-conductive encapsulants; lightweight adhesives	
Demand for energy efficient buildings	 Highly durable, easy-to-apply insulating adhesives and tapes Adhesive fastening via Direct Glazing 	Enable Low-
Micro-electronics and electronic light-weighting	Shock-resistant component assembly Waterproof and lighter weight next-generation smartphones	Temperature Curing
E-commerce and demand for sustainable packaging	 Automated, lower-cost, more sustainable packaging solution for online retailers Flexible packaging innovations substituting rigid packaging 	Temperature curing:
Emergence Of New Adhesive Types	The various types of adhesives being developed are dual-stage pressure-sensition adhe Stick-to-skin adhesives are used in monitoring and drug delivery devices	esives, pre-cut layered adhesive films and stick-to-skin adhesives
Building & Construction	Consumer trend away from U.S. brick and mortar retail stores the commerce. More w Life Cycle Assessment and demands from end users and the decification community. Complex new corrosion challenges	varehouse and distribution center construction, less retail.
Increased penetration by meeting previously unmet needs	Reduce asset out-of-service time during repro- Improved manufacturing throughput for afficiency Joining mixed materials – Enables up to more composites, plastics and metal alloys Enable low-temperature curing Customized packaging options for precision dispensing, minimizing waste	
Source: ChemQuest	CONFIDENTIAL © Copyright 2021. The Adhesiye & Sealant Council. All Rights Reserved	Chem uest 58

Problem To Be Solved

Greater demand for faster project completion – time pressure.

Pressure to use existing available products/technology in conditions not meant for.

Risk for everyone!

Problem To Be Solved

CONTRACTORS THAT WANT TO WORK THROUGH THE COLDER MONTHS AND KEEP EMPLOYEES RETAINED. THIS MEANS WORKING IN WEATHER CONDITIONS THAT ARE NOT IDEAL.

The Decision

- Decision to work on a 2-component polyurethane sealant:
 - Better fit for the construction projects that would desire to continue to work during winter months.
 - Wider range of colors (i.e. on-site color tinting)

-component PU Sealant

2-component PU Sealants

How Contractors Worked Previously

- Existing sealants must be used above 40F and rising temperatures.
- When material gets too cold or is not conditioned properly it cannot be applied.
- Delays and work stoppages.

Arctic Sealant Project Objective

- Develop a Sealant that:
 - Can be mixed down to 15F just as regular sealant mixes as room temperature.
 - Can gunned and tooled down to 15F – similar to room temp application of standard product.

Let's start with the basics

PU Sealants and Cold Weather

1 Component

- Low temperature
 - Viscosity increase
 - Difficult to gun and tool
- Low moisture
 - Slow adhesion development
 - Slow tensile strength development

2 Component

- Low temperature
 - Viscosity increase
 - Difficult to mix, gun and tool
- Low moisture
 - Slow adhesion development
 - Slow tensile strength development

Important factors – Sealing at Low T

Installation ease

- Mixing (2 component)
- Applying
- Tooling

Cure speed

- Adhesion strength development
- Tensile strength development

Performance in the joint

- Movement during cure
- Compression as Temperature rise

Solution

Cold Temperature Sealing – Patented Solution for 2 C PU

(19) M Restant	
Star suspine	(11) EP 3 336 114 A1
(12) EUROPEAN PATE	ENT APPLICATION
 (43) Date of publication: 20.86.2018 Bulletin 2018/25 (21) Application number: 16204451.5 (22) Date of filing: 15.12.2016 	(51) Ini CL: C09G 18/48/2062/0 C09G 18/12/2062/1 C09G 18/12/2062/1 C09G 18/12/2062/1 C09G 18/12/2062/1 C09J 175/08/2066/1 C09J 175/08/2066/1
(84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR RH RH UE IS IT LLT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States: BA ME Designated Validation States: MA MD	 (72) Inventors: Yao, Hong Boonton, New Jersey 07005 (US) Schlumpf, Michael 8143 Staflikon (CH) (74) Representative: Sika Patent Attorneys ole Sika Technology AG Corp. IP Dept.

(54) TWO-COMPONENT POLYURETHANE SEALANT FOR APPLICATION AT LOW TEMPERATURE

(57) A two-component composition is described which comprises A) an isocyanate component comprising an illocyanate-terminated unstrane prepolymer, B) a water component comprising water, and at least one latent amine hardener in component A) and/or component. B). The two-component composition of the invention is suitable as a sealent, in perticular as a joint sealent. Perticular advantages are thet primertess application is possible with good adhesion, even at low temperatures, such as 4.4°C or below. The substrate to be sealed are preferably concrete substrates.

Installation Ease

Installation Ease

✓ Mixing (2 component)

✓ Tooling

Gunning

Cure speed – Adhesion Development

Adhesion development on unprimed concrete	Standard 2-component Sealant	2-component Arctic Sealant
3 days @5°F		
7 days@ 5°F		
3 days @15F		
7 d@15F		
1 day @73°F		
2 days @73°F		

RED = not cured, no adhesion development ORANGE = not fully cured, adhesion development on substrate EREEN = cohesive failure on substrate

Cure Speed – shore A development

Cure Speed – Tensile Development

Cure Speed

✓Adhesion built up at low temperatures

 Tensile strength development at low temperatures

Movement capability

Installation ease – safer installation as ✓ Mixing (2 component) ✓ No pre-heat needed ✓ Gunning ✓ Guns easy at 15F ✓ Tooling ✓ Tools easy at 15F

Cure speed – development at low T ✓ Adhesion strength built up ✓ Fully developed in 3 days @ 15°F ✓ Tensile strength built up ✓ 0% of ultimate strength reached after 7 days at 15F

PRI Construction Materials Technologies LLC 6412 Badger Drive Tampa, FL 33610 813.621.5777 https://www.pri-group.com/

Laboratory Test Report

Report for:	Grimaldo Ramos
	Sika Corporation
	201 Polito Avenue
	Lyndhurst, NJ 071
Product Name:	Sikaflex* -2C NS Arctic
Project No.:	557T0019 & 557T0020
Dates Tested:	October 14, 2019 - December 12, 2019
Test Methods:	ASTM C 920
Results Summary:	Compliant: ASTM C 920:
	Type S. Class 35,

Movement capability

Externally tested

100

80

60

40

20

20

10

-10

+/-35% movement on unprimed mortar

Field Testing Phase – Establish Success

- Two full winter seasons for field testing.
- Market feedback helped adjust to get a final desired product.
- Practical applications and monitoring helps with skeptics.
- Full release with resounding success and acceptance.

Field Testing Phase – Mixing and Applying

Arctic Sealant Application

- Sound, well prepared substrate just as with any other sealant application.
- No Frost.
- Watch the Dew Point.

• Dry Surface

Where Arctic Sealant is Being Used

Helping Contractors Work Through the Winter

Distribution Center Construction Do the

Amazon Building

EE

Warehouse Construction

0.22

Questions?

borong.marie@us.sika.com muench.eric@us.sika.com

BUILDING TRUST

INTERNATIONAL CONCRETE REPAIR INSTITUTE 1000 Westgate Drive, Suite 252 St. Paul, Minnesota 55114 USA P: +1 651-366-6095 | E: info@icri.org | www.icri.org