Effects of Aggregate Extension on Properties of Rapid-Set Prepackaged Patching Materials

Zhifu Yang, Heather Brown, and Jon Huddleston

School of Concrete and Construction Management, Middle

Tennessee State University

Wayne Seger

Structures Division, Tennessee Department of Transportation

2017 Spring Convention | March 15-17 | Montreal, Canada

Rapid-set patching material selection and request

- Selection of materials started with reviewing TDOT approved product list
- Requests were sent out to the major material suppliers
 - Approximately 15 material suppliers/manufacturers were contacted. 8 delivered their products.
 - 23 products were collected with a typical weight of 50 to 60 lbs.
 - 16 were mortars and extended with 3/8" crushed limestone aggregates

CONCRETE REPAIR

2017 Spring Convention | March 15-17 | Montreal, Canada

2017 Spring Convention | March 15-17 | Montreal, Canada

Material	Material Characteristics	CA Added, %
ID		wt.
#1	Rapid-set shrinkage-compensating cement-based mortar	50
#2	Shrinkage-compensating cement-based mortar	50
#3	Magnesium phosphate cement-based mortar	60
#4	Magnesium phosphate cement-based mortar for hot weather	60
#5	High-early-strength cementitious mortar	55
#6	High-early-strength cementitious mortar with extended set time	55
#8	Rapid-set slope-grade cementitious mortar	50
#11	Rapid-set fiber-reinforced cementitious materials-based mortar	60
#12	Rapid-set cementitious materials-based mortar	50
#13	Rapid-set magnesium phosphate cement-based mortar	60
#14	Rapid-set cement-based horizontal-patching mortar	80
#15	Rapid-set low-shrinkage high-early-strength mortar	50
#17	Rapid-set high-strength cementitious materials-based mortar	60
#18	Rapid-set cementitious materials-based mortar	50
#21	Rapid-set high-strength special cement-based grout	50
#23	Rapid set cement-based no-shrink grout	50

Mixing and proportioning

- Proportioned following the instructions in product data sheet.
 - Average water content was added
- All patching materials were mixed in a 2.0 ft³ rotating drum mixer for quick-set materials (55 -70 lbs), or in a 6.0 ft³ rotating drum mixer (110 140 lbs).
 - Water was first added, then patching materials, and then coarse aggregate.
 - Mixing for 1-2 minutes

INTERNATIONAL

Classification of setting

- Initial set penetration resistance reached 500psi. Mixture was no longer workable.
- Final set penetration resistance approached 4000psi. Mixture became fully rigid and started to develop strength at a significant rate.
- Normal set Mixture remained workable for a minimum of 45 minutes and began to solidify within 1 to 4 hours (e.g. #2, #5 and #6).
- Quick set Considerable loss of workability in 10 to 45 minutes and mixture became hardened in less than 1 hour (e.g. #11).
- Flash set Instantaneous loss of consistency and mixture started stiffening in less than 10 minutes (e.g. #13).

7 Spring Convention | March 15-17 | Montreal, Canada

Material ID	Initial Set, min.	Final Set, min.	Type of Setting	
#1	26	35	Quick	
#2	200	223	Normal	
#3	9	10	Flash	
#4	10	30	Quick	Result
#5	80	95	Normal	cummory
#6	157	168	Normal	summary
#8	25	57	Quick	for time
#11	26	30	Quick	of setting
#12	9	14	Flash	1
#13	6	7	Flash	
#14	19	24	Quick	1
#15	25	36	Quick	
#17	48	58	Normal	1
#18	55	85	Normal	1
#21	30	38	Quick	
#23	31	33	Quick	bh 15-17 ∣ Montreal, Canagla

Compressive strength development summary

- Most materials (more than 10 out of 16) showed very high early strength (more than 3000psi in 3 hours), and medium to high 28-days strength (more than 5000 psi)
- Coarse aggregate extension noticeably reduced both early and 28 days compressive strength by several hundreds to several thousands psi.
- In few cases, aggregate extension increased the compressive strength

2017 Spring Convention | March 15-17 | Montreal, Canada

INTERNATIONAL

CONCRETE REPAIR

3

Material ID	Without Aggre	Without Aggregate Extension		With Aggregate Extension	
	Bond	Failure Plane	Bond Strength,	Failure	
	Strength, psi		psi	Plane	
#1	5460	S+PM	5059	PM	Slant shear
#2	5443	S	5057	PM	bond
#3	0	В	2793	PM	strength
#4	1671	В	2947	B+PM	result
#5	5790	S	6120	S	summary
#6	5520	S+B	4180	PM	
#8	2395	B/PM	2379	B+PM	B-Bond
#11	5101	B/PM/S	4807	PM	PM-
#12	5344	S	5606	PM+S	Patching
#13	1110	В	1855	B+PM	S-Substrate
#14	5162	B/S/PM	4392	PM	
#15	5598	S	6723	S	
#17	5417	PM	4611	PM	
#18	4755	PM	4444	PM	
#21	5990	B/PM+S	-	-	
#23	5717	B+PM	_	—	ntreal, Canada

Slant shear bond result summary

- 57% of material showed a reduced slant shear bond strength after aggregate extension, but interestingly nearly 43% exhibited an increased slant shear bond strength after the coarse aggregate was added.
- 12 materials exhibited good or fair bond capacity with the slant shear bond strength greater than 4000psi
- 1 material had poor bond strength due to weak material (#8)

INTERNATIONAL CONCRETE REPAIR

 Magnesium phosphate cement-based materials (#3, #4 and #13) displayed poor bonding to limestone aggregate concrete

2017 Spring Convention | March 15-17 | Montreal, Cangela

Restrained shrinkage strain development patterns

- Curve "A" 22%, nearly zero strain. No cracks.
 Similar to magnesium-phosphate-cement-based materials
- Curve "B" 48%, very rapid strain growth at the early age and then a sudden release of strain, high risk of restrained shrinkage cracking at the early age (less than 5 days).
 - Similar to type III Portland cement-based concrete
- Curve "C" 13%, small positive strain at the beginning followed by a continuous increase of shrinkage strain.
- Curve "D" 13%, fast at the early age; but steadily slowed down in approximately a week.
 - Similar to calcium sulfoaluminate cement-based materials
- Curve "E" 4%, rapid growth initially followed by a noticeable release several days after casting. Delayed cracking.
 - Similar to type III cement + an expansive component

2017 Spring Convention | March 15-17 | Montreal, Canada

Restrained shrinkage cracking classification

Material ID	Free shrinkage at 28 days, %	Restrained ring cracking	Age of cracking, days	
#1	-0.079	Cracking	1.5	
#2	-0.07	Cracking	2	
#3	-0.007	None	N/A	Without
#4	-0.01	None	N/A	oggrogato
#5	-0.1	Cracking	2	ayyreyate
#6	-0.068	Cracking	3.5	extension
#8	+0.005*	None	N/A	
#11	-0.075	Cracking	0.5	
#12	2 -0.024 Small cracking		7	Free dry
#13	#13 -0.003		N/A	
#14	-0.028	Cracking	0.5	shrinkage vs.
#15	-0.093	Cracking	0.5	Restrained
#17	-0.039	Cracking	3	ring cracking
#18	-0.07	Cracking	3	
#21	-0.1	Cracking	3	
#23	#23 _{-0.045}		3	15-17 Montreal, Can <mark>ag</mark> ia

Material ID	Free shrinkage at 28 days, %	Restrained ring cracking	Age of cracking, days	
#1	-0.045	Cracking	6	
#2	-0.04	Cracking	7	
#3	None	None	N/A	With
#4	None	None	N/A	oggragate
#5	-0.06	Cracking	2	aggregate
#6	-0.03	Cracking	12	extension
#8	None	None	None	
#11	-0.055	Cracking	2	
#12	-0.05	None	N/A	
#13	None	None	N/A	Free ary
#14	-0.028	Small Cracking	3	shrinkage vs.
#15	-0.085	Small Cracking	3	Restrained
#17	-0.038	None	N/A	ring cracking
#18	-0.035	None	N/A	
#21	-0.052	Cracking	7	
#23	_	_	_	5-17 Montreal, Car <mark>ze</mark> la

Aggregate Extension vs Cracking • Coarse aggregate extension reduced the risk of

- Coarse aggregate extension reduced the risk of restrained shrinkage cracking
 - Cracking typically occurred in original prepackaged mortars, but for 50% of these mortars, no cracking took place after coarse aggregates were introduced.
- Coarse aggregate extension reduced the size and delayed the time of cracking

INTERNATIONAL

 For some prepackaged mortars, medium to large cracking was observed at early age, but after aggregate extension, these materials demonstrated small cracks at a later age

2017 Spring Convention | March 15-17 | Montreal, Carggia

Material	Total Charge Passe	d over 6 Hours, C			
ID	Prepackaged Mater	ials	Prepackaged Materials w/ Aggregate Extension		
#1	967.5	Very low	653	Very low	
#2	1526.7	Low	787.3	Very low	
#3	9871.5 (3 hours)	High	2608	Moderate	
#4	4838.5	High	3239.7	Moderate	Rapid chloride
#5	734	Very low	1077.3	Low	penetrability test
#6	275.3	Very low	1988.3	Low	rogulta
#8	3021	Moderate	1800.7	Low	results
#11	247	Very low	199.7	Very low	
#12	1127	Low	1224.3	Low	Verv low: <1000
#13	7021.3	High	4190.3	High	Low: 1000 – 2000
#14	651.5	Very low	725	Very low	Moderate: 2000 –
#15	710.5	Very low	1082	Low	4000
#17	404	Very low	298.3	Very low	High: >4000
#18	1477.7	Low	1290.3	Low	i ngini i se s
#21	1948	Low	1760	Low	March 15 17 Mastroal Correla
#23	632.7	Very low	-		viarch 15-17 Montreal, Cargoa

Rapid Chloride Permeability Summary

- Most materials showed very low to low permeability. Only 3 materials showed high permeability
- For most materials (approximately 10 out of 16), aggregate extension slightly reduced or increased the permeability. Only six materials showed significant changes after aggregate extension

2017 Spring Convention | March 15-17 | Montreal, Canada

Typical freeze/thaw damage patterns			
Slight scaling	Severe scaling		
Longitudinal cracking and severe deterioration	Trasverse cracking and severe deterioration		
INTERNATIONAL CONCRETE REPAIR IN S TITUTE	ring Convention March 15-17 Montreal, Canada		

Material ID	DF (Durability	Mass Loss, %	Visual Examination when test	
	Factor)		stopped	
#1	98.7	6.1	Moderate scaling	-
#2	98	4.6	Slight scaling	
#3	44.4	4.1	Severe deterioration	
#4	36.1	1.4	Severe deterioration	Prepackaged
#5	29.2	3.9	Severe deterioration	without
#6	28.3	8.7	Severe deterioration	aggregate
#8	37.8	5.2	Severe deterioration	extension
#11	91.3	0.2	No visible deterioration	-
#12	86	3.7	Severe scaling	-
#13	72.6	-1.2*	No visible deterioration	-
#14	96.8	2.3	Slight scaling	-
#15	97.5	0	Very slight scaling	-
#17	90	-0.5*	Moderate scaling	-
#18	100	2.1	Slight scaling	
#21	99	-0.8*	No noticeable deterioration	
#23	Not tested	Not tested	Early age cracking before test	Montreal, Cargala

Material ID	DF (Durability	Mass Loss,	Visual Examination when test	
	Factor)	%	stopped	
#1	87.9	1.5	Slight scaling	
#2	84.5	1.8	Slight scaling	
#3	19.8	4.5	Severe deterioration	
#4	24.6	1.4	Deterioration & cracking	Prepackaged
#5	14.6	1.2	Severe Cracking	materials with
#6	24.9	0.4	Severe deterioration	extension
#8	—	—	—	
#11	-	-	—	
#12	65.5	2.0	Severe deterioration	
#13	23.5	4.2	Severe deterioration	
#14	68.5	2.6	Severe scaling	
#15	59.3	-0.5	Severe cracking	
#17	71.0	9.7	Severe scaling	
#18	76.2	6.6	Severe scaling	
#21	46.3	0.4	Slight scaling	7.1 Mashard Canada
#23	Not tested	Not tested	Early thermal cracking before test	7 Montreal, Carggia

Freeze/thaw test summary

- 6 materials showed a durability factor of 95 or above with no significant deterioration through 300 freeze and thaw cycles.
- 4 materials displayed slight to moderate deterioration with a durability factor between 60 and 95.
- 6 materials performed rather poorly with a durability factor of less than 60. Cracking or severe scaling typically occurred.
 - all magnesium phosphate cement-based materials behaved badly due to their high permeability.
- All materials showed reduced freeze and thaw resistance after aggregate extension. Most materials performed very poorly after coarse aggregate was added.

2017 Spring Convention | March 15-17 | Montreal, Cargela

INTERNATIONAL CONCRETE REPAIR

9

Acknowledgements

The authors acknowledge the financial support of TDOT through the research project. They are also grateful for the time and contributions of technical personnel from TDOT. The authors acknowledge the delivery of testing materials from the suppliers. Finally, the authors acknowledge the assistance from the CIM students at MTSU for the specimen preparation and testing.

2017 Spring Convention | March 15-17 | Montreal, Canada