

Reinforcement Corrosion, No Perfect Solution

What is Concrete?

+ Concrete is economical with a long life & low maintenance + Concrete does not rot, corrode, or decay.

- + Concrete can be molded or cast into almost any desired shape.
- + Concrete is fire-safe & able withstand high temperatures.
- + Concrete is resistant to wind, water, rodents, and insects.
- + 12 BILLION cu meters per year globally
- + ~1 cu yd / person / year in USA
- + >70 Billion cu meters placed in USA since 1930

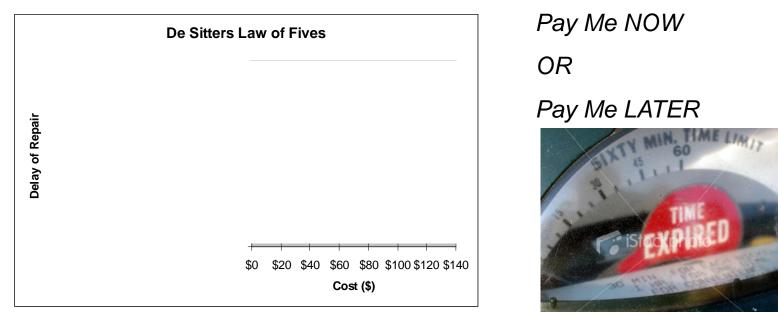
with ~10 Billion cu meters > 20 years old

Definitions

- Anode (–) the electrode at which electrons are lost and oxidation occurs. This is where we see rust.
- Cathode (+) the electrode at which electrons are gained and reduction occurs.
- Electrolyte <u>solution</u> containing ions (Cl⁻, OH⁻)
- Steel Reinforced concrete is a unique "battery" in that the electrolyte....

IS THE CONCRETE

...And all its components


What is the biggest ROI for concrete repair?

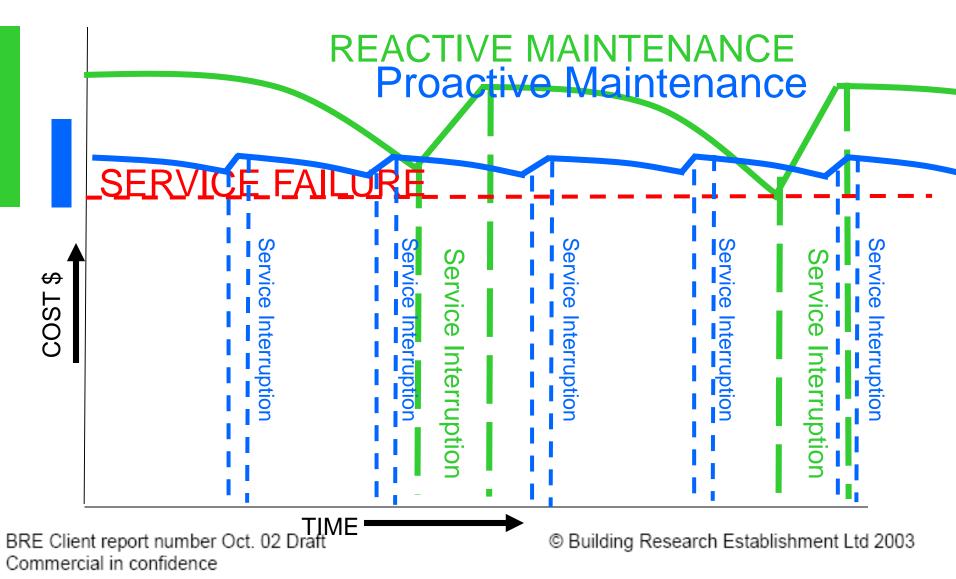
De Sitter's Law of Fives

\$1 spent Monitoring =

\$5 spent on Preventative Maintenance Before Corrosion Initiation =

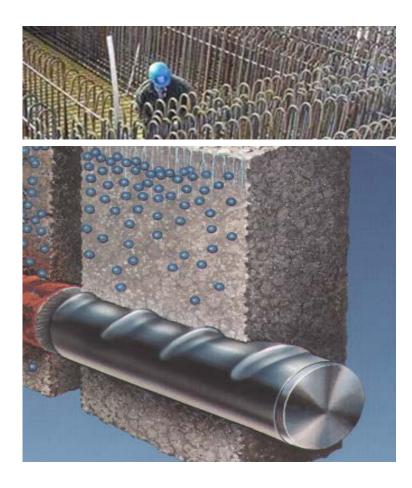
\$25 spent on Repair and Maintenance after Localized Corrosion Initiation =\$125 spent on Repair & Replacement after Generalized Corrosion

© Building Research Establishment Ltd 2003


Maximum Permissible Corrosion

BRE Client report number Oct. 02 Draft Commercial in confidence © Building Research Establishment Ltd 2003

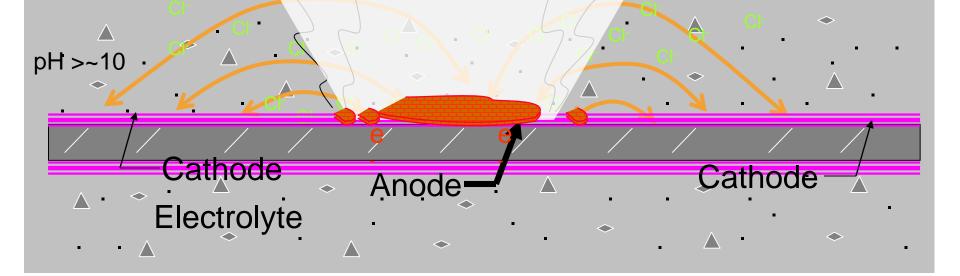
Proactive NO Intervention Preventative Intervention	
Corrosion Initiation	Corrosion Propagation
Phase	Phase
(i.e., ingress of	(i.e., progressive corrosion
chloride, carbonation, etc.)	& degradation of Reinforcement)


COST \$

Do Unto Your Future Before Your Future Does Unto YOU!

Concrete & Reinforcement Steel

A Strong Connection



Steel strengthens concrete

- Concrete itself cannot withstand high tensile strengths
 - Usage of steel reinforcement to provide world's most widely used building composite

Concrete protects steel

- A dense layer of cover concrete acts as a barrier to the atmosphere
- Alkalinity released during hydration sustains a stable oxide film on the surface
- Additionally a lime rich layer forms on the steel surface, assisting passivation

Corrosion = Iron + Oxygen + Moisture

Either

- the pH falls due to carbonation or other chemicals
- chlorides reach the steel above the threshold concentration
- an electrical charge destroys the natural protection of the steel
- Electrons flow and ions migrate
- Rust expansion causes cracking
- Rapid deterioration
- Spalling

Corrosion of Steel in Concrete

A huge cost to society...

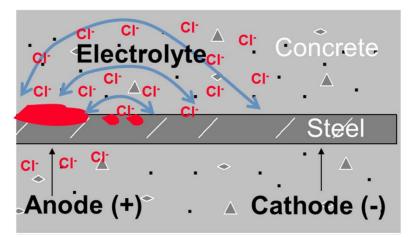
CaCl₂ Grout Lowe's Motor Speedway Bridge Concord, North Carolina --

May 20, 2000

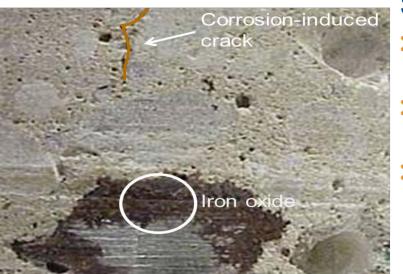
Rebar detailing and installation de la Concorde overpass in Laval Canada — Sept. 30, 2006

Key Facts:

- All steel reinforced concrete worldwide is at risk due to corrosion
- Slobal cost of corrosion 1 5% of GNP
- Solution Steel Stress Stre
- >> As long as we reinforce concrete with steel, it will rust.



Natural laws: Concrete cracks – steel corrodes


Corrosion of Steel in Concrete

Electrochemical Process and Materials Science

Passivation layer can be breached

- >> Halide ions > ~330 ppm
- » pH value < ~10</p>
- In combination with Oxygen, Temperature, resistivity etc...

Steel corrosion is the problem

- Conversion to iron oxide which occupies 4-10 times the volume
- Internal pressure builds up, results in cracking and spalling of concrete
- Loss of strength, weakening of the concrete faster deterioration, up to failure

Corrosion:

There is no perfect Solution. We are still Learning.

RUST

THE SEASONAL APOCALYPSE HAS ARRIVED

ARE YOU PREPARED?

12

Corrosion Management

Essential element of sustainable strategy

Sustainability

Corrosion Management of Concrete Construction

Economy

Environment

17, 17, 19

Social Responsibility

Provide return on investments Protects resources

Saves Lives

Anode

- Concrete Permeability
 - W/CM, Pozzolans, Chemical Additions
 - o Membrane, Silane
- Corrosion Threshold
 - o Inhibitor
 - Change Metal (i.e. Stainless)
- Reduce Reactive Surface
 - \circ Coatings
- Reduce Corrosion Rate
 - o Dry Out Concrete
- Force Opposite Reaction
 - o Cathodic Protection

Cathode

- Reduce Area of Reactive Surface

 Coatings
- Dry Concrete
- Reduce Oxygen
- Reduce Cathode Effectiveness

 Inhibitors
- o Cathodic Protection

Electrical Continuity

- Disconnect Anode & Cathode
- Electrical Separation of Bars
 - Coatings

Ionic Path

- Higher Resistivity
 - o Lower W/CM
 - o Dry Concrete
 - o SCM

Corrosion Prevention/Mitigation Strategies "Breaking the Chain"

- **Mechanical/Physical**
 - Remove/Replace
 - Barrier
 - Chloride Extraction
 - Alternative Materials
- Electrical
 - Cathodic Protection
- Chemical
 - Admixtures
 - Surface Applied Corrosion Inhibitors

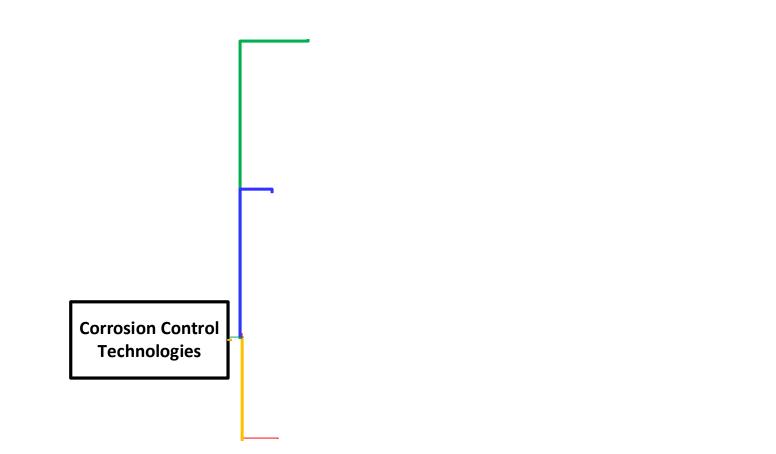
Products for Concrete Corrosion Prevention and Mitigation

include:

Concrete QualitySteel applied Protection>> Admixtures>> Coatings>> Alternative Reinforcement>> Active Primers

Surface applied Protection >> Coatings >> Impregnations

Concrete Replacement » Repair Mortars » Fairing Coats



Electrochemical Protection >> Sacrificial Anodes >> Surface applied C. I.

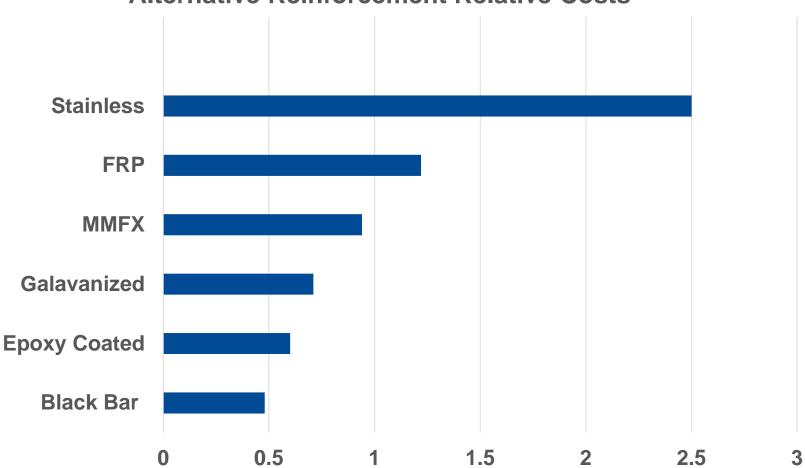
-

Non-Corrosive Reinforcement

Stainless steel, FRP bar and specialty alloys
Galvanized steel
Epoxy coated steel
Fiber reinforced polymer

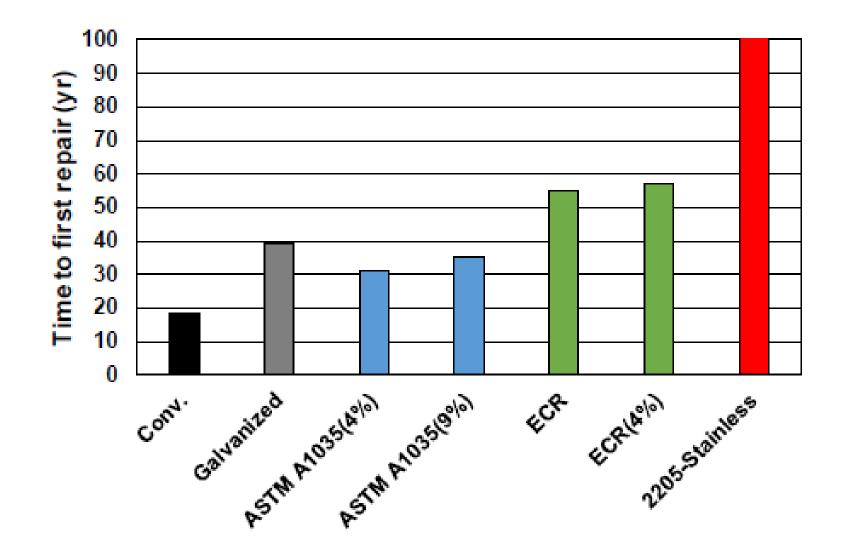
PRO

- Permanent
- Eliminates Corrosion

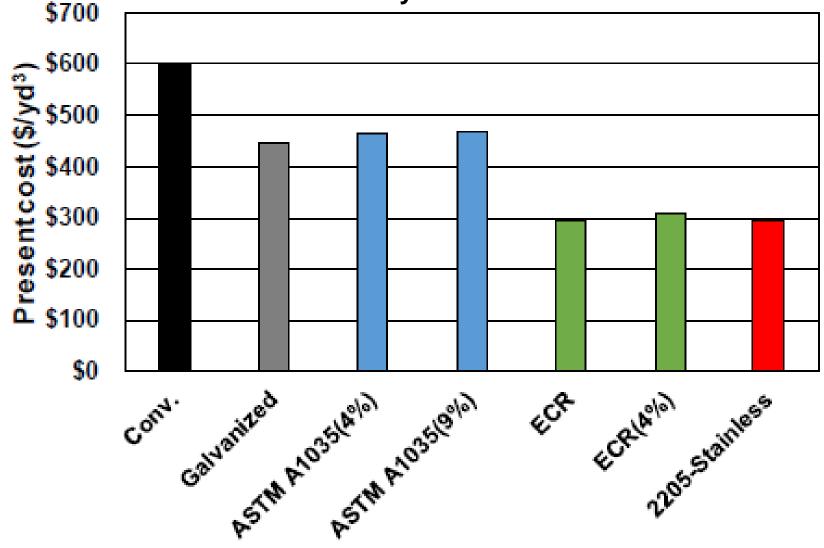


CON

- EXPENSIVE
- Design may be different
- Compatibility with conventional reinforcing?
- Pinholes on Epoxy Coated
- Bond on galvanized & epoxy & FRP


Stainless Galvanized Epoxy Coated Bar FRP Bar Fabric Sheet

Alternative Reinforcement Relative Costs


http://www.fdot.gov/materials/structural/meetings/crrb/12_deployment.pdf

ACI Webinar D. Darwin Corrosion Protection Systems for Reinforcing Steel Feb. 6, 2018

Life Cycle Costs

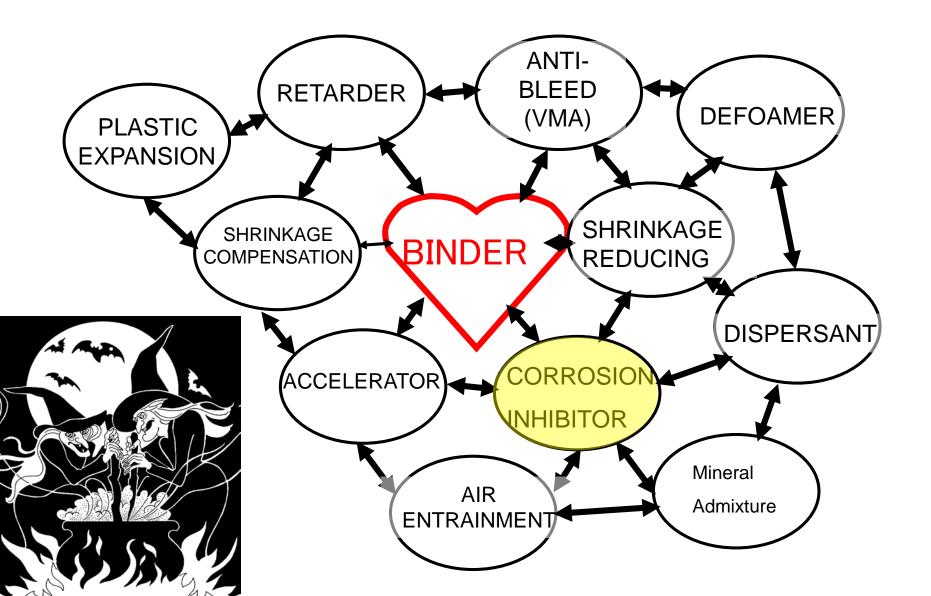
ACI Webinar D. Darwin Corrosion Protection Systems for Reinforcing Steel Feb. 6, 2018

Admixtures

PRO

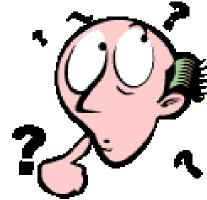
- Preventative
- Usage history
- Rebar Contact

Adsorbed layer formers Oxidizing inhibitors Passivators Conversion layer formers Scavengers



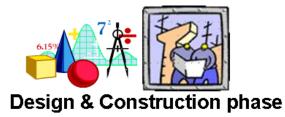
CON

- May leach
- Dosage Verification
- Dispersion Verification
- Concentration Dependency
- Consumption during inhibition?
- Proprietary


Inorganic (Nitrite) $Fe^{+2}+OH^{-}+NO_2^{-} \rightarrow NO^{+}\gamma FeOOH$ Organic Anode and Cathode effects Coat steel & decrease permeability

WHAT Cementitious Binder Types

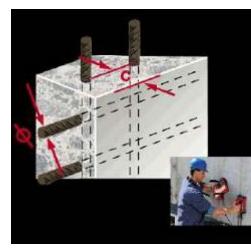
- OPC=Ordinary Portland Cement, Blended, & Performance-Based Hydraulic Cement
- HAC= High Alumina Cement
- AAP=Alkali Activated Pozzolan
- CSA=Calcium Sulfoaluminate Cement
- Polymer Cement = Polymer (Latex) Modifier + binder
- MagPhos=Magnesium Ammonium Phosphate
- Gypsum=Calcium Sulfate


Increased Cover

Repair mortars, Concrete
 Anti-carbonation coatings

PRO

- Renewable
- Inexpensive
- Possible to Enhance Appearance


CON

- Consumable (coatings)
- Section thickness increase (cover)
- Load increase
- Defects may magnify issues
- Detail and Inspection Intensive

Structural Repair

Shotcrete

Membranes

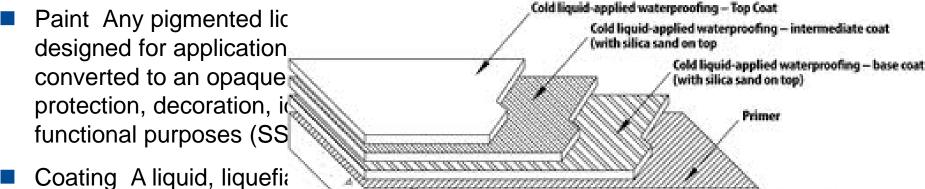
BreathableImpermeable

PRO

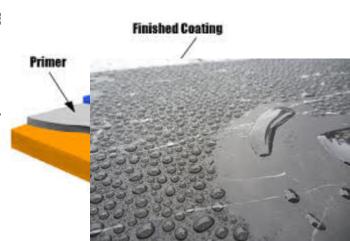
- Aethestic Appearance
- Relatively Inexpensive
- Recoatable & Repairable

CON

- May Need Dry Substrate
- Surface Preparation
- Maintenance
- Abrasion & CTE
- Snow Removal
- Impermeable Trap Moisture



Deck Membrane Products


Resinous Flooring

Construction, Maintenance, Repair Phases

- to a solid protective, dec application as a thin layer (usually >5 mils ary) (55PC)
- Penetrating Sealer A material that has the ability to penetrate and seal the surface to which it is applied to either preve the penetration of liquid or gaseous media (after IC
- Membrane A protective surface treatment with a th than 30 mils (0.75 mm) and less than 250 mils (6 m surface of concrete

Regular Concrete

Reinforcement Coatings

PROTECTION

PRO

- Field application
- Low cost
- Mature technology
- Some claim bonding agents

CON

Pinholes & Under-bar

Epoxy

Cement/epoxy hybrid

Cement latex

Zinc based

- Bond to Concrete Window?
- Continuity of Coating
- Hardening Depending on Environment
- Incipient Anode

Penetrating Sealers

PRO

- Renewable
- Inexpensive
- No Appearance
- Easy to apply
- Hydrophobization

Maintenance & Repair Phases

CON

- Consumable
- Maintenance
- Effectiveness Monitoring

Silane

Others

Siloxane

Siliconate

- High Hydrostatic
- Crack Bridging
- Solvent?
- Overspray

Water Repellents

SACI

MITIGATION

PRO

- Renewable
- Inexpensive
- No Appearance
- Easy to apply

Maintenance & Repair Phases

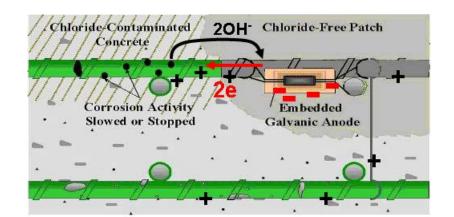
Amino alcohol Amino carboxylate Silicate Aminofunctional silanes Nitrites

CON

- Inhibition, not solving
- Effectiveness monitoring
- Penetration
- Residue
- Volatility
- Many technologies
- Life cycle
- Product compatibility

Galvanic Anodes

- Point source or general protection
- Follow corrosion activity (i.e. RH-Temp)
- Effectiveness monitoring
- Ring / incipient anode
- Self powered



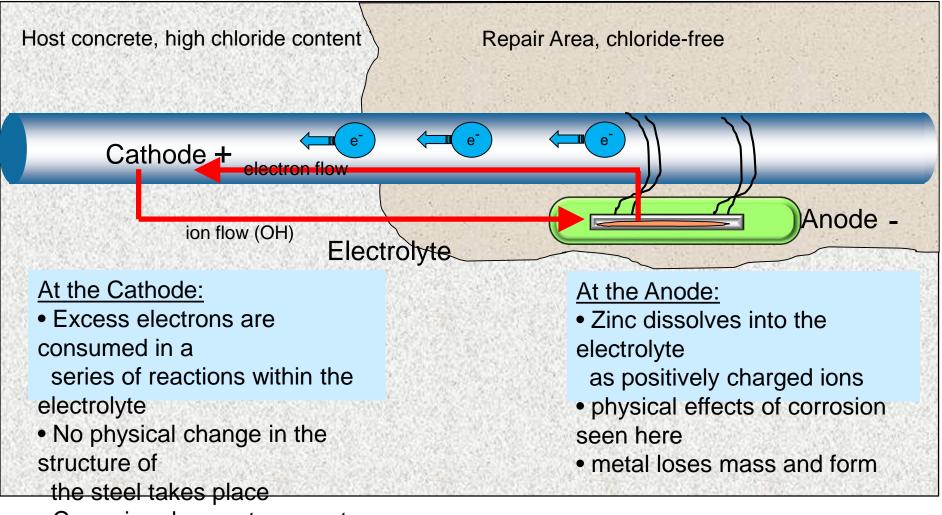
Construction & Repair Phases

"Hockey Pucks" Hydrogel Arc Spray Imbedded mesh Hybrid

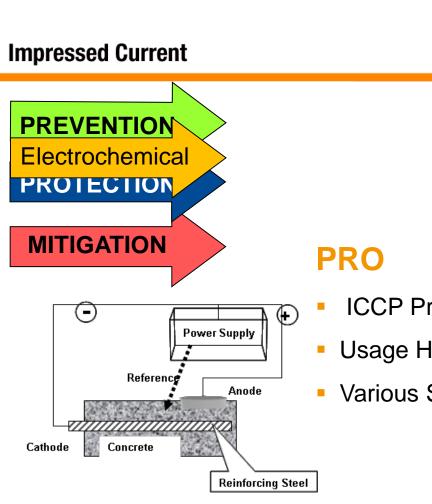
CON

- Consumable
- Passivation?
- Excavation
- Oxidation buildup

<u>Anodes</u>



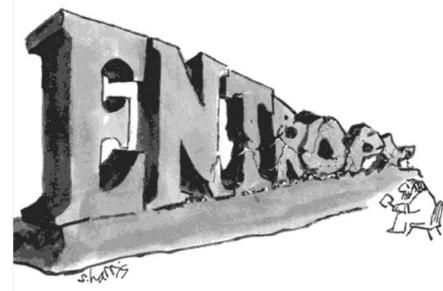
Example of NOT breaking the chain



Fixing one patch causes the surrounding concrete to act like an *incipient anode*. This is also called "Halo Effect" or "Ring Anode Effect"

Galvanic Anodes – How They Work

Corrosion does not occur at


- **Discrete Anodes** Strip Systems ICCP Coatings **Mortar Systems Electrochemical Chloride Extraction**
 - Realkalization Electrochemical moisture extraction

- **ICCP** Proven to Prevent
- Usage History
- Various Systems

CON

- Expensive
- Design and maintenance critical
- Reinforcement continuity
- Anode acidification
- May cause AAR
- H₂ Generation?
- Appearance?

It's not so much about letting it go as submitting to the inevitable

Good Trade Practices

DDAS with design Low W/CM Satisfactory Material Quality Enough Binder for Strength Consistency for Consolidation Enough Cover Sufficiently Cured...

Concrete Maintenance

Verify Inspect Fix cracks Keep the Water Out!

Don't Delay, Problems GROW

Keep the Water Out!

IT COULD BE THAT THE PURPOSE OF YOUR LIFE IS ONLY TO SERVE AS A WARNING TO OTHERS.

BASF Construction Chemicals, EB-N