
Seismic retrofit of structural elements with FRCM prior to recent earthquakes in Italy: What happened to them?

Dr. G. Mantegazza Technical and R.& D. Manager RUREDIL Spa

Milan Soccer Stadium- Italy Beams Shear reinforcement of first ring

ICIU

2

 \mathbf{O}

0

2

CONCRETE REPAIR

Cooling Towers

Thermal Power Plant (Germany)

CONCRETE REPAIR

2018 Spring Convention | seis ic solutions | April 11-13 | San Francisco

Direzione Tecnica

FRCM Components

Carbon

+ Cement-based Adhesive

C- FRCM

FRCM Components

PoliparafenilenBenzobisOxazolo (PBO)

+ Cement-based Adhesive

PBO- FRCM

FRCM SOLUTION

FRCM: Fiber Reinforced Cement Matrix

A composite system for structural strengthening:

- High strength mesh works as continuous reinforcement
- Cement-based adhesive anchors the mesh to the concrete support
- One or more sheets of mesh are used so as to reach the requested load increase

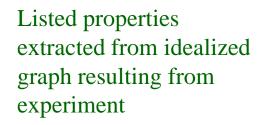
Components At –A- Glance

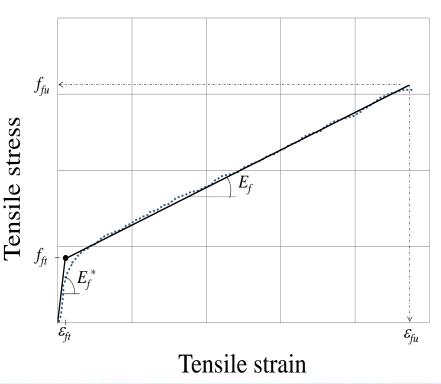
PBO fiber mesh reinforcement					
Ultimate Tensile Strength ksi (MPa)	Tensile Modulus Elasticity ksi (Gpa)	Ultimate Elongation %			
840 (5,800)	40,000 (270)	2.5			
550 - 700 (3,500 - 4,800)	35,000 - 55,000 (230 - 375)	0.9 - 2.1			
290 - 400 (2,000 - 2,800)	15,000 - 17,000 (109 - 120)	1.7 - 2.4			
220 - 500 (1,500 - 3,500)	4,500 – 11,500 (30 - 80)	2.1 - 4.5			
	Strength ksi (MPa) 840 (5,800) 550 - 700 (3,500 - 4,800) 290 - 400 (2,000 - 2,800) 220 - 500 (1,500 - 3,500)	Strength ksi (MPa) Elasticity ksi (Gpa) 840 40,000 (5,800) (270) 550 - 700 35,000 - 55,000 (3,500 - 4,800) (230 - 375) 290 - 400 15,000 - 17,000 (2,000 - 2,800) 4,500 - 11,500			

are superior to carbon

Cement-based adhesive

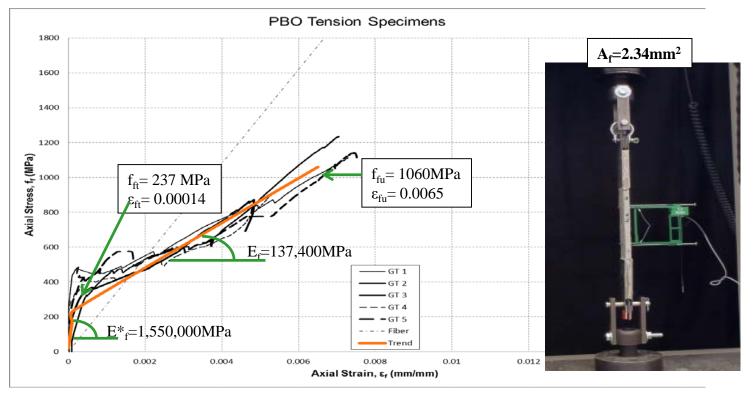
- Very low W/C ratio 0.30
- Very low heat of hydration


• Compressive strength:


- 4,900 psi at 28 days
- Flexural Strength:
 - 580 psi at 28 days

AC434

According to AC434, FRCM tensile properties evaluated include:


- -Tensile modulus of elasticity of un-cracked specimen, E_f* -Tensile modulus of elasticity of cracked specimen, E_f
- -Ultimate tensile strain, ε_{fu}
- -Ultimate tensile strength, f_{fu}
- -Tensile strain corresponding to transition point, ϵ_{ft} -Tensile stress corresponding to transition point, f_{ft}

Characterization – Typical Tensile Properties

Characterization – FRCM vs. FRP Failure Mode Comparison

FRCM failure is by pullout of the fibers

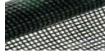
FRP failure is by breakage of the fibers

Material Characteristics of PBO FRCM Composite System

This strengthening system must be designed to meet specific project design requirements. As design guide, follow ACI 549.4R-13 "Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures".

Performance characteristics of the composite were tested by ICC-ES accredited Lab in accordance to AC434 so as to satisfy ACI 549.4R-13 Design Guidelines

PROPERTY	SYMBOL	UNIT	MEAN	STD
Ultimate Tensile Strength	$f_{_{fu}}$	ksi (MPa)	241.34 (1664)	11.17 (77)
Ultimate Tensile Strain	€ _{fu}	mm/mm	0,0176	0,0013
Modulus of Elasticity of Cracked specimen	E _f	msi (GPa)	18.51 (127,65)	2.22 (15,32)


Product Highlights

- ICC-ES ESR-2013 listed product.
- Level of reinforcement is **comparable to Fiber Reinforced Polymer** (FRP) that uses carbon fiber and epoxy resin as adhesive.
- Level of strengthening can be customized through the application of one or more plies of PBO Fabric.
- Once applied the composite does not alter the response to fire of steel reinforced concrete and therefore **fire protection is not required**, even for indoor applications.

Material Characteristics of carbon FRCM

This strengthening system must be designed to meet specific project design requirements.

As design guide, follow ACI 549.4R-13 "Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures".

Performance characteristics of the composite were tested by ICC-ES accredited Lab in accordance to AC434 so as to satisfy ACI 549.4R-13 Design Guidelines.

PROPERTY	SYMBOL	UNIT	MEAN	STD
Ultimate Tensile Strength	f _{fu}	ksi (MPa)	149.53 (1031)	7.83 (54)
Ultimate Tensile Strain	ε _{fu}	mm/mm	0,0100	0,0014
Modulus of Elasticity of Cracked specimen	E _f	msi (GPa)	11.56 (79,73)	2.67 (18,44)

Product Highlights

- ICC-ES ESR-2013 listed product.
- Level of strengthening can be customized through the **application of one or more plies of C-FRCM.**
- Once applied the system does **not alter the response to fire of masonry** construction and therefore fire **protection is not required**, even for indoor applications.
- **Durable** in conditions of **high ambient temperature** since the system is not characterized by glass transition temperature limitations.

ACI 549.4R-13

Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures

Reported by ACI Committee 549

American Concrete Institute®

ES ICC EVALUATION SERVICE	
www.icc-es.org (800) 423-6587 (562) 699-0543 A Subsidiary of the International Code Council [®]	
ACCEPTANCE CRITERIA FOR MASONRY AND	
CONCRETE STRENGTHENING USING FIBER-REINFORCED	
CEMENTITIOUS MATRIX (FRCM) AND STEEL REINFORCED GROUT(SRG)	
COMPOSITE SYSTEMS	
AC434	/
Approved on June 2016	

L'AQUILA EARTHQUAKE

April 6th 2009

Project: Church of Santa Maria di Centurelli – Caporciano (AQ) – ITALY

- **Amenities:** The rural church was built in 1558. It is an ancient transit route for shepherds towards the city of L'Aquila, from the renaissance age. Geographical position, structure of the church, vaults.
- **Owner:** Vatican City State Heritage
- Contractor: Italian Artistic Heritage Autority

Consulting Engineering (Architecture): Franco De Vitis – Architect

Consulting Engineering (Structure): Carlo Grande – Engeneer

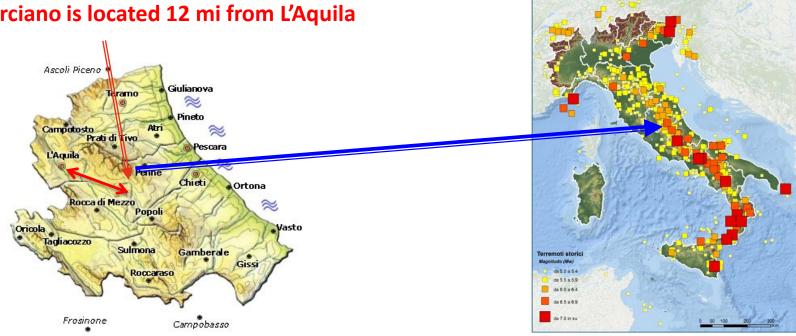
Year: 2003 Project area: 540.000 ft² Building area: 355.200 ft² Cost of the project: 700.0 €

2018 Spring Convention | seis ic solutions | April 11-13 | San Francisco

Strengthening Surface: 6500 ft² C-FRCM

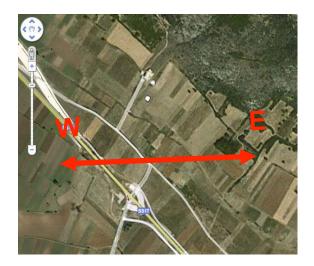
Church of Santa Maria di Centurelli Caporciano (AQ)

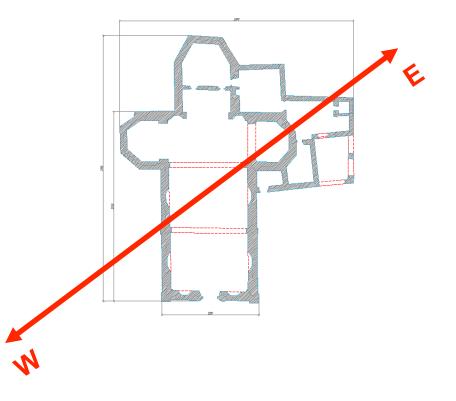
Seismic retrofitting of the vaults made with FRCM



CONCRETE REPAIR

Church of Santa Maria di Centurelli Caporciano (AQ)





2018 Spring Convention | seis ic solutions | April 11-13 | San Francisco

@INGVterremoti

Seismic wave direction

Damage due to earthquake

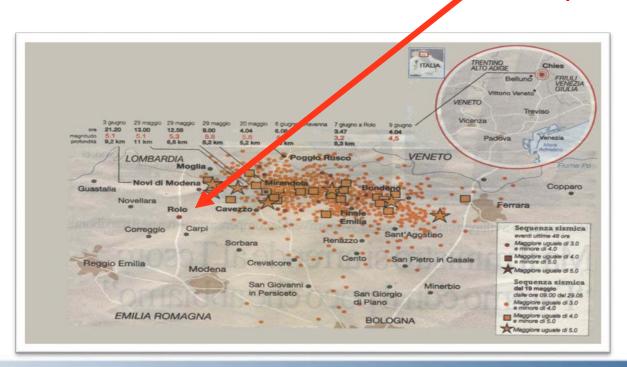
CONCRETE REPAIR

INTERNATIONAL CONCRETE REPAIR

EMILIA ROMAGNA EARTHQUAKE May 12th 2012

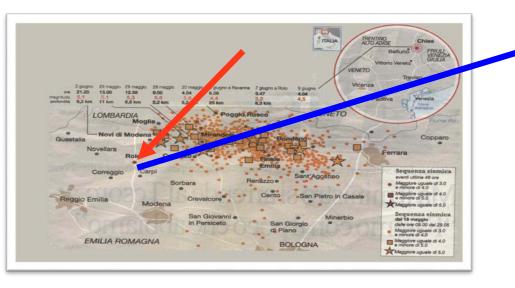
- **Project:** Chapel of S. Francesco–ROLO (PC) ITALY- Seismic retrofitting Oratory, Structure of the church and vaults.
- **Owner:** Vatican City State Heritage
- Contractor: Regional Christian Dept. Of Rolo Italy
- Consulting Engineering (Architecture): Eng. Poli ESATECNA Consulting (Reggio Emilia)
- Consulting Engineering (Structure): Eng. Poli ESATECNA Consulting (Reggio Emilia)

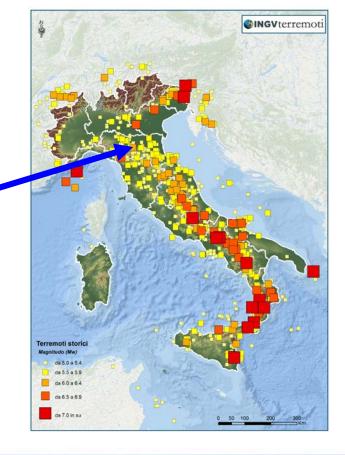
Year: 2011 Project area: 43.100 ft² Building area: 3.300 ft² Dject: 100.000 € Strengthening Surface: 3.770 ft² C-FRCM



Seismic retrofitting of the vaults MADE WITH FRCM YEAR 2011

ORATORY CHAPEL - ROLO (RE)


The Rolo municipality is located in the earthquake crater



ORATORY CHAPEL - ROLO (RE)

The Rolo municipality is located in the earthquake basin

The chapel is located in the red zone, a restricted area with a lot of collapsed buildings.

Absence of cracks on the vaults reinforced with FRCM

CONCRETE REPAIR

CENTER OF ITALY- EARTHQUAKE

August 24th 2016

- Project:Regional State Highway Viaduct Location Posta (Rieti)- Italy
Seismic retrofitting of colums and beams
- **Owner:** ANAS ITALIAN NATIONAL HIGHWAY AUTHORITY
- **Contractor:** ANAS ITALIAN NATIONAL HIGHWAY AUTHORITY

Consulting Engineering : Technical Office - Rieti's County

Year: 2015 Project area: 323.917 ft² : 269.097 ft²

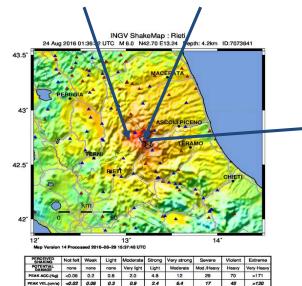
Strengthening Surface: 22.640 ft² PBO-FRCM

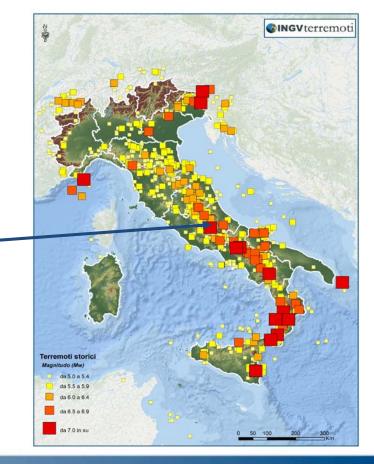
Viaduct 70° mile - Location Posta (Rieti)

Structural Repair with FRCM systems MADE IN 2015

CONCRETE REPAIR

Viaduct – 70 th Mile- Location Posta (Rieti)





The viaduct is located in POSTA (Rieti)

17 mi distance from Amatrice

VIII

ANAS ROMA – ITALIAN NATIONAL HIGHWAY AUTHORITY

They made a survey after the earthquake and they noted

NO DAMAGE NO CRACKS

AFTER THE EARTHQUAKE

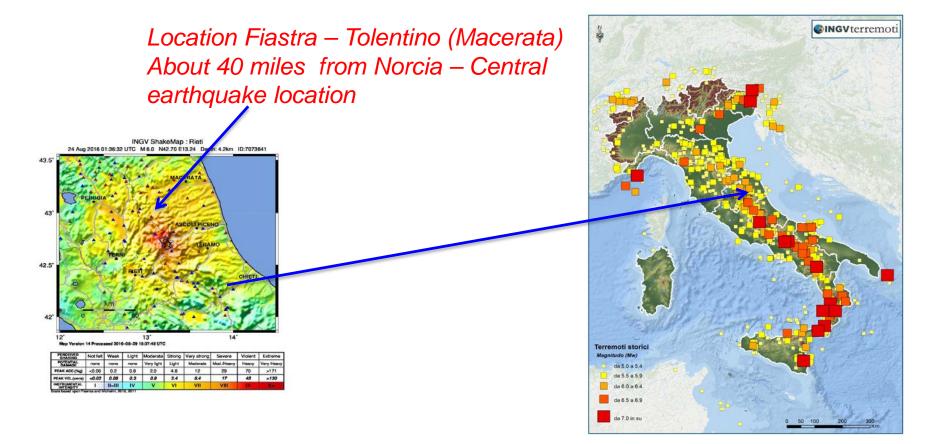
NORCIA EARTHQUAKE

October 30th 2016

- Project:Regional State Highway Masonry bricks bridge
Location Abbazia di Fiastra Tolentino- Macerata Italy
- **Owner:** ANAS ITALIAN NATIONAL HIGHWAY AUTHORITY
- Contractor: ANAS ITALIAN NATIONAL HIGHWAY AUTHORITY
- **Consulting Engineering :** Technical Office. Macerata's County

Year: March 2016 Project area: 215.278 ft² Building area: 161.458 ft²

Cost of the project: 1.300.000 € Strengthening Surface: 12.917 ft² C-FRCM



Masonry bricks bridge with arches on three span Location: Abbazia di Fiastra – Tolentino (Macerata)

CONCRETE REPAIR

No damage, No cracks or other structural effets coming from the earthquake has been reported by Regional Highway Autority.

Questions

CONCRETE REPAIR