

2018 ICRI Spring Convention Seismic Solutions

Industrial Structure Column Repair

By: Mark Guirguis P.E., ICRI, ACI I Jakub Szewczyk, ICRI, CSRT, CWI

Presentation Outline

- <u>Project Background</u>
- Deterioration Mechanism
- Repair Strategy
- Seismic Design Challenges
- Constructability Challenges
- Results

CONCRETE REPAIR

CONCRETE REPAIR

Coker Operation

Structural Loads:

- Extremely heavy
 Operating Loads (full drums, proof loads)
- Comparatively light Dead Loads
- Resulted in full perimeter column repairs (instead of phased approach)

Coker Unit at a Midwest Refinery

- 3 Steel Derrick Structures
- 6 Coke Drums (2 per Derrick) •
- 3 Concrete Decks -
- Concrete Chute –
- Coke Pit
- Overhead Crane

Project Timeline:

- 1. Repair accessible Columns prior to unit outage (phased)
- 2. Remove Top Derricks (Max 700,000 lbs)
- 3. Remove Old Drums (Max 480,000 lbs)
- 4. Repair Concrete Structure (45' tall)
- 5. Install New Drums (Max 550,000 lbs)
- 6. Re-install Top Derricks
- 7. 47 days

Design Parameters

- Determine Extent of Concrete Damage
- Design for Additional Loads of New Drum
- Determine Loading During Construction
- Seismic Considerations
 - Category B
 - ACI 318-11 Chapter 21 Section 21.3.3.2
 - Stirrup Spacing reduced from 18" to 6"

Presentation Outline

- Project Background
- Deterioration Mechanism
- Repair Strategy
- Seismic Design Challenges
- Constructability Challenges
- Results

Deterioration Mechanisms

- Mechanical and impact damage
- Water and moisture cycles
- Freeze / thaw cycle
- Temperature differences
- Vibrations from equipment

Deterioration

- #3 Stirrup spacing at 18" (many were damaged)

- Structure vulnerable to brittle column failure in seismic event

- Code requires 6"
- Heavy deterioration

- No concrete cover in many spots

Presentation Outline

- Project Background
- Deterioration Mechanism
- <u>Repair Strategy</u>
- Seismic Design Challenges
- Constructability Challenges
- Results

Repair strategy

- Column Repairs phased based on loading and accessibility. 3 different loading conditions:
 - Fully loaded drums and derricks
 - Empty drums
 - Removed drums and derricks
- Installing new shear reinforcement
- Augmenting damaged reinforcement

CONCRETE REPA

Repair strategy

- Stirrup spacing reduced from 18" to 6" to meet current seismic requirements and increase column ductility
- Vertical reinforcement augmented
- Cathodic protection
 installed
- Higher strength concrete

Repair strategy

Cathodic Protection

Anodic Ring (Halo Effect)

- Halo Effect phenomena is associated with a repair area that is surrounded by "new" corrosion sites.
- Halo Effect is one of the primary reasons for shot-lived repairs.

CONCRETE REPAIR

Presentation Outline

- Project Background
- Deterioration Mechanism
- Repair Strategy
- <u>Seismic Design Challenges</u>
- Constructability Challenges
- Results

FIGURE 22-1 (Continued)

Per IBC 2012 Section 1901 General:

- 1901.1 Scope. The provisions of this chapter shall govern the materials, quality control, design and construction of concrete used in structures.
- 1901.2 Plain and reinforced concrete. Structural concrete shall be designed and constructed in accordance with the requirements of this chapter.

Zone 1 is an outdated term to define seismic risk which has been replaced by the term "seismic design category" (SDC). The current SDC corresponding to Zone 1 is "B" per ACI 318-14, Table R5.2.2.

Table R5.2.2—Correlation between seismic-related terminology in model codes

Code, standard, or resource document and edition	Level of seismic risk or assigned seismic performance or design categories as defined in the Code		
ACI 318-08, ACI 318-11, ACI 318-14; IBC of 2000, 2003, 2006, 2009, 2012; NFPA 5000 of 2003, 2006, 2009, 2012; ASCE 7-98, 7-02, 7-05, 7-10; NEHRP 1997, 2000, 2003, 2009	SDC ^[1] A, B	SDC C	SDC D, E, F
ACI 318-05 and previous editions	Low seismic risk	Moderate/ intermediate seismic risk	High seismic risk
BOCA National Building Code 1993, 1996, 1999; Standard Building Code 1994, 1997, 1999; ASCE 7-93, 7-95; NEHRP 1991, 1994	SPC ^[2] A, B	SPC C	SPC D, E
Uniform Building Code 1991, 1994, 1997	Seismic Zone 0, 1	Seismic Zone 2	Seismic Zone 3, 4

^[1]SDC = seismic design category as defined in code, standard, or resource document. ^[2]SPC = seismic performance category as defined in code, standard, or resource document.

Presentation Outline

- Project Background
- Deterioration Mechanism
- Repair Strategy
- Seismic Design Challenges
- <u>Constructability Challenges</u>
- Results

Mast Climbers

Presentation Outline

- Project Background
- Deterioration Mechanism
- Repair Strategy
- Seismic Design Challenges
- Constructability Challenges
- <u>Results</u>

Lessons Learned

- System for Identifying Reinforcement Augmentation
- Engineering Field Support Beneficial
- 30lb hammers for concrete surface and 15lb hammers around reinforcement
- Importance of considering constructability in repair design and in meeting current seismic code provisions

INTERNATIONAL CONCRETE REPAIR

Project Team:

Mark Guirguis Nick Triandafilou Jakub Szewczyk Slawomir Domagala Kathy Sitko

QUESTIONS?

