## Assessment & Repairs to Fire Damaged Concrete Foundations

#### A Historic & Devastating 2017 Fire in Santa Rosa, CA

Ashok Kakade, P.E., Principal Engineer



1534 B Street, Hayward, CA 94541-3018 Tel. (510) 581-2342 Fax (510) 581-4178 www.concretescience.com, info@concretescience.com



# Most Devastating Fire

- Week of October 8<sup>th</sup>, 2017
- Over 245,000 Acres
- Over 40 dead and hundreds hospitalized.
- More than 8,500 homes & businesses destroyed
- US \$10 Billion +











Drone Video





# **Fire Resistance of Concrete**



#### **1.Excellent**

- a) Non-combustible
- b) High resistance to heat transfer
- c) No toxic fumes







## **Question:**

#### Can I save my Fire Exposed Concrete Structure?



## **Answer:**





### Approx. Melting Points

- Polyethylene: ~ 250 °F
- Lead ~ 620 °F
- Glass Softening: ~ 1,100 °F
- Aluminum: ~ 1,200 °F
- Silver: ~ 1,760 °F
- Copper:
- Cast Iron:
- Steel:

- ~ 1,980 °F ~ 2,100 °F
- ~ 2,550 °F





Concrete Slab Exposed to Fire





## Concrete Stem Wall Exposed to Fire





Relative Compressive Strength After Fire





Compressive Strength of Concrete After Fire





#### Yield Strength of Steel After Fire





# Deflection Diagram



# Typical Fire1,200 °F (~ 650 ° C)<br/>- 2,000°F (~ 1,100 ° C)Temperature &- 2,000°F (~ 1,100 ° C)Duration30 MINUTES



## Damage to Concrete

- 1. Reduction in **Compressive Strength** & Modulus of Elasticity
- 2. Micro-Cracking
- 3. Spalling
- 4. Color Change
- 5. Loss of bond to steel
- 6. Possible loss in steel strength & loss of tension in prestressing
- 7. Increase in deflection



## **Changes in Concrete Material**

- 120 °C: Negligible Effect
- 250 °C: Localized crack, commencement of strength reduction
- 400 °C: Decomposition of Calcium Hydroxide begins
- **600 °C**: Cracks in cement paste, color change to pink
- 900 °C: Color change to buff
- 1200 °C: More decomposition of paste
- 1400 °C: Complete decomposition

