

2024 FALL CONVENTION DENVER, COLORADO | OCTOBER 22-25,

Repairs During Construction

Lessons Learned the Hard Way

Jose Pacheco, PhD, PE, PEng

www.icri.org

2024 FALL CONVENTION OCTOBER 22-25 2024

CONCRETE

re Repurpose Renew

Outline


- Repairs During Construction
 - Feature or Bug?
- Assessing the Repair
 - Identification
- Challenges & Constraints
 - Technical & Non-technical
- Repair Procedures & Materials
 - Special cases
- Durability of Repairs
 - Often required when service life is specified
- Case Studies
- Remarks

Repairs During Construction

- Part of the Construction Industry
 - Defective vs. repairable
- Specified vs. Goal-oriented
 - One-size-fits-all or performance-based
- Durability
 - Durability of repair & maintenance considerations
- Execution
 - Expertise may not be the same as in new construction
- Schedule
 - Delays, adjacent work
- Cost
 - Potentially high in certain situations
- Acceptance
 - When to punt?

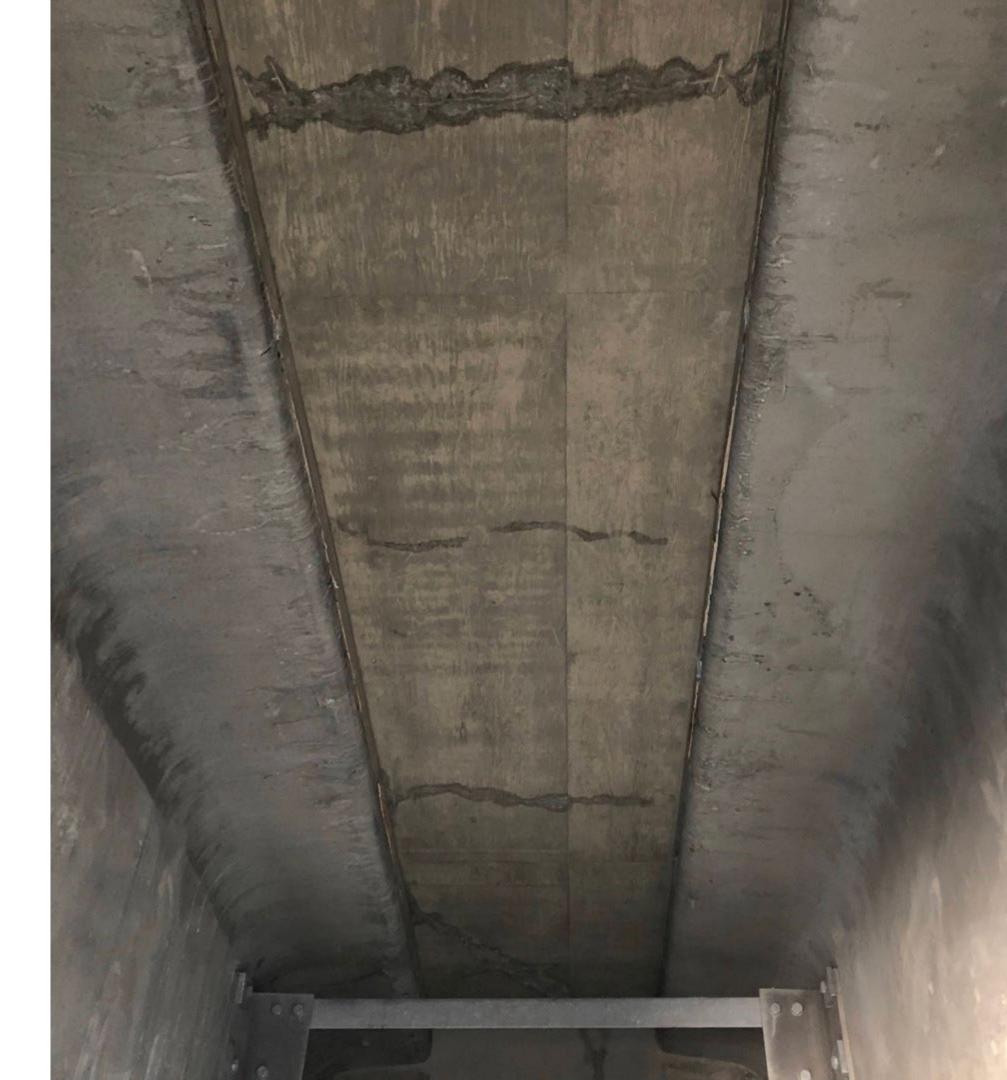
Repairs During Construction

Testing Agency

 Verification of compliance

Owner Asset Management

Assessing the Repair


- Identification
 - Visual inspection, NDE, etc.
- Can it be repaired?
 - Magnitude of issue
- Impact on Schedule
 - Include repair preparation & execution
- Orientation
 - Horizontal, vertical, and overhead
- Accessibility
 - Elevated, confined spaces
- Stakeholders
 - Owner, Contractor, Material Supplier(s), QA/QC
- Accountability
 - Financial responsibility
- www.icri.org

Assessing the Repair

- Identification
 - Visual inspection, NDE, etc.
- Can it be repaired?
 - Magnitude of issue
- Impact on Schedule
 - Include repair preparation & execution
- Orientation
 - Horizontal, vertical, and overhead
- Accessibility
 - Elevated, confined spaces
- Stakeholders
 - Owner, Contractor, Material Supplier(s), QA/QC
- Accountability
 - Financial responsibility
- www.icri.org

Challenges & Constraints

- Technical
 - Specification Requirements
 - one-size-fits-all approach
 - Mandatory or specified
 - Adequate in most cases
 - Project-specific repair conditions
 - Specification compliance better solution?
 - Repair material & method selection
 - Execution
 - Acceptance
- Non-technical •
 - Limited time
 - Cost
 - Stakeholder relationship & communication

www.icri.org

SECTION 03 30 00 - CAST- IN-PLACE CONCRETE

- 1. Wood, and other nonpermanent materials that are more compressible than concrete, may be permitted to be left in the structural concrete of the various excavations outside of the excavated surface when approved by the Engineer.
- The Engineer will determine if materials are tight in place, provide firm 2. support of the rock, and do not create a continuous soft cushion between the structural concrete and the rock.
- Concrete Repairs G.
 - 1. Defective Concrete.
 - Any concrete that may be found defective at any time before the a completion of this Contract shall be cut out to the extent ordered by the Engineer and replaced without additional payment thereafter.
 - b. Local repairs shall be made only if explicitly permitted. If local repairs are so ordered by the Engineer, they shall be made immediately on removal of the forms. No thin patches or plastering on concrete will be permitted. Cut recesses of a shape to retain the patches and of a depth to ensure their permanency. If required, set anchor bolts in drilled holes. Embed wire mesh or other suitable devices in the patch.
 - Any concrete that before the completion and acceptance of all c. Work under this Contract, develops defects from freezing or from lack of moisture, or from any cause for which the Contractor is responsible, shall be satisfactorily repaired or replaced at the expense of the Contractor.
 - 2. Repair of Cracks
 - Cracks in concrete shall be repaired by injection of epoxy for a. structural cracks or by injection of hydrophilic resin for shrinkage cracks as determined by the Engineer. The resulting crack repair shall be watertight. These materials shall be applied in accordance with the manufacturer's recommendations. Initial application of the repair material shall be made in the presence of the Engineer and a representative of the manufacturer. All injection Work shall be performed by experienced personnel certified by the manufacturer.
 - 3. Repair of Formed Surfaces:
 - a. The following defects shall be repaired in all types of formed finishes:

- Methods of Repair of Unformed Surfaces: 6.
 - Correct high areas in unformed surfaces by grinding, after the concrete has cured sufficiently so that repairs can be made without damage to adjacent areas.
 - Correct low areas in unformed surfaces during, or immediately b. after completion of surface finishing operations by cutting out the low areas and replacing with fresh concrete. Finish repaired areas to blend into adjacent concrete. Where the concrete has already set and repairs are required, sawcut around the perimeter of the area to be repaired to a 1/2-inch depth and remove concrete so that the minimum thickness of the repair is 1/2 inch. Apply specified concrete repair mortar in accordance with the manufacturer's directions and recommendations.
 - Remove defective areas to sound concrete with clean, square c. cuts, to a minimum depth of 1.5 inches. Provide 3/4 inch clearance all around exposed reinforcing steel. Clean and dampen all concrete surfaces in contact with patching concrete and brush with the specified bonding agent. Place patching concrete while the bonding agent is still tacky. Mix patching concrete of the same materials and proportions to provide concrete of the same type or class and color as the adjacent finished concrete. Place, compact and finish as required to blend with adjacent finished concrete. Cure in the same manner as adjacent concrete.
 - d. Where flooring material is to be installed, assure that surface is acceptable for flooring material to be installed in accordance with manufacturer's recommendations.
- 7. Other Methods of Repair:
 - Repair methods not specified above may be used with written a. approval of the Engineer.

FIELD TESTING / QUALITY CONTROL

Field Quality Control Testing:

- 1. General:
 - a. Unless required otherwise by the Contract, all field quality control testing of materials and the resulting concrete for compliance with the technical requirements of the specifications shall be performed by the DEP's Engineering Services group of the Bureau of Engineering Design and Construction and/or the COAS consultant.

Challenges & Constraints

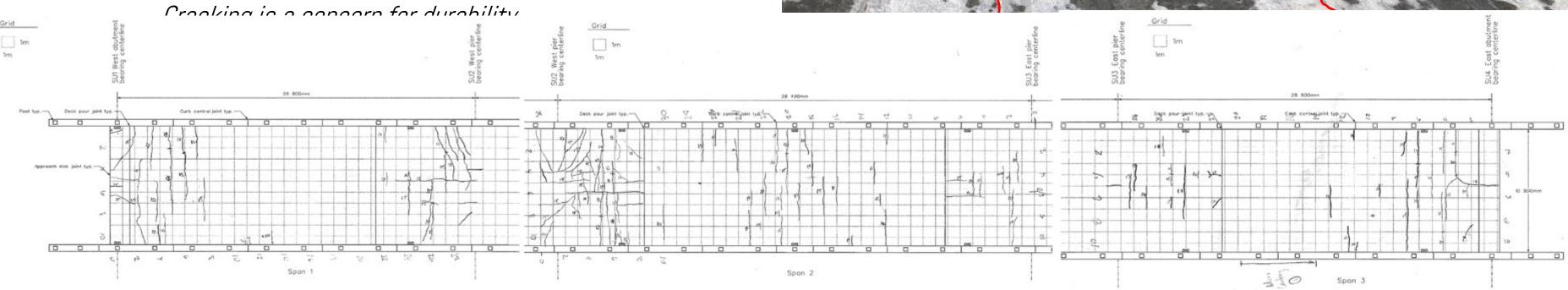
- Technical
 - Specification Requirements
 - one-size-fits-all approach
 - Mandatory or specified
 - Adequate in most cases
 - Project-specific repair conditions
 - Specification compliance better solution?
 - Repair material & method selection
 - Execution
 - Acceptance
- Non-technical
 - Limited time
 - Cost
 - Stakeholder relationship & communication

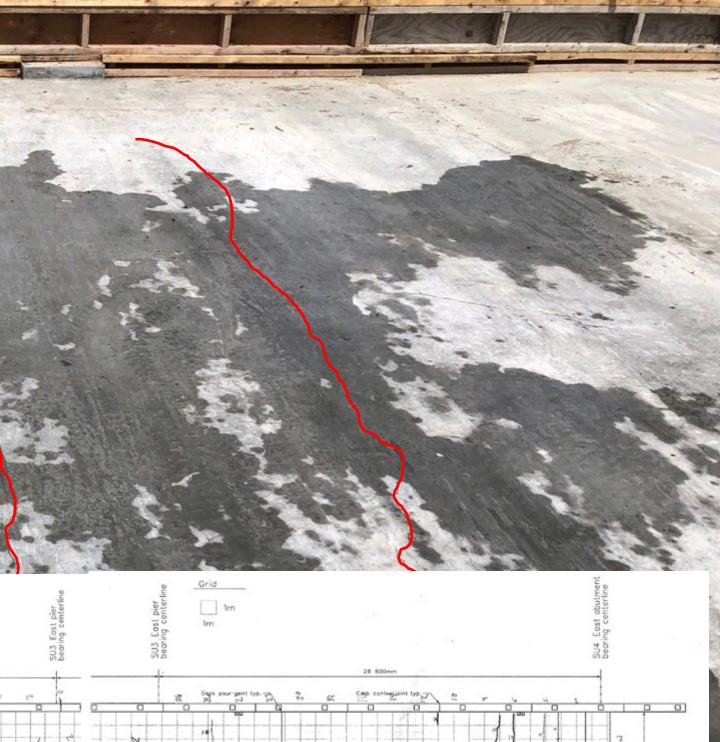
Materials & Procedures

- Compatibility:
 - Strength, strain, volume, durability
- Execution
 - Selection of material & procedures
- Repair material selection
 - Resinous, cementitious, others
- Bagged vs. Produced
 - Volume of repair & compatibility
- Placement methods
 - Hand-placed, form-and-pump, etc.
- Resources: ICRI & ACI
 - Documents, Committees, etc.

Materials & Procedures

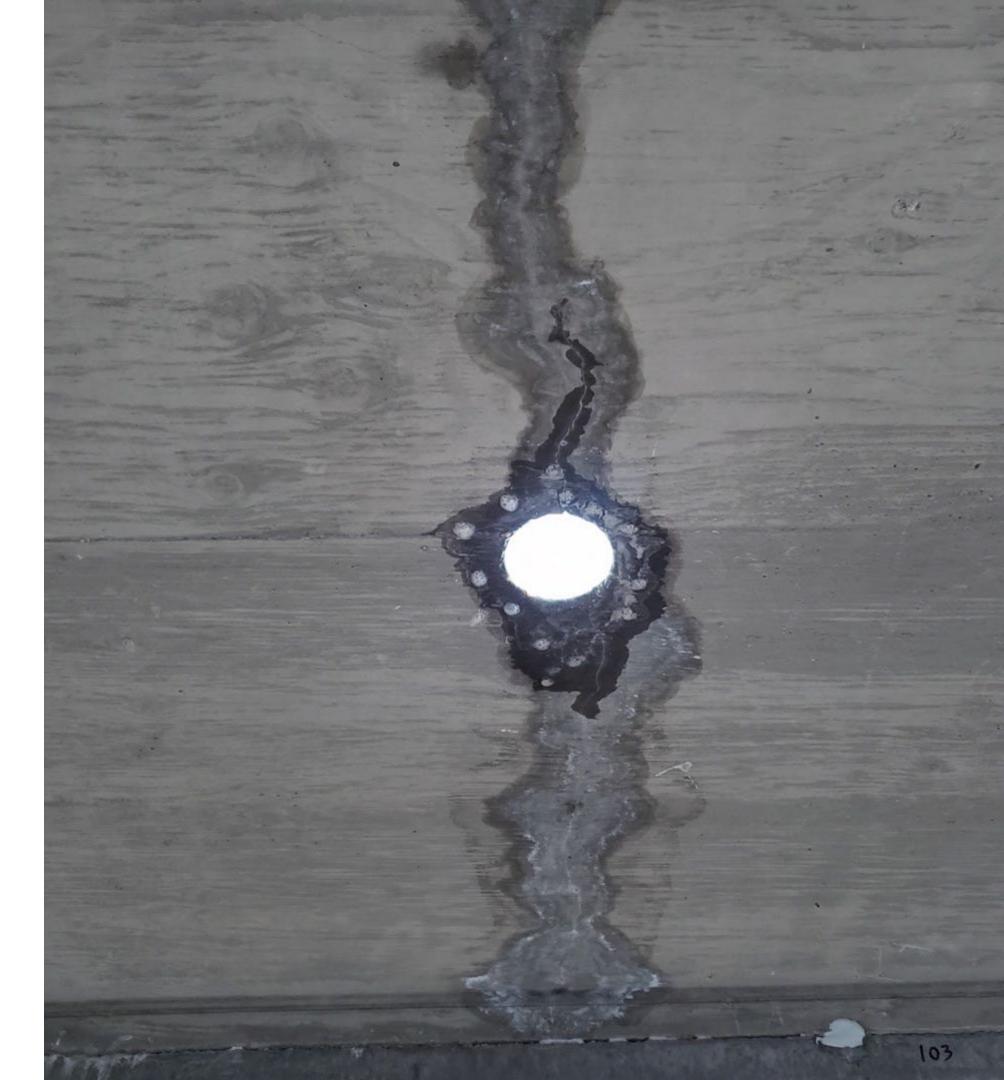
- Compatibility:
 - Strength, strain, volume, durability
- Execution
 - Selection of material & procedures
- Repair material selection
 - Resinous, cementitious, others
- Bagged vs. Produced
 - Volume of repair & compatibility
- Placement methods
 - Hand-placed, form-and-pump, etc.
- Resources: ICRI & ACI
 - Documents, Committees, etc.


- Constructed in 2020
 - Noticeable deck cracking before the commission
- Concrete met specification requirements
 - Compressive strength, chloride penetration
- Exposure to severe deicing salts
 - Cracking is a concern for durability
- Investigation of the potential cause(s)
 - Document review, coring, petrography, etc.
- Responsibility
 - MT, EOR, contractor, material supplier, etc.
- Repair recommendations
 - Crack repair vs. crack repair plus overlay



• Constructed in 2020

- Noticeable deck cracking before the commission
- Concrete met specification requirements
 - Compressive strength, chloride penetration
- Exposure to severe deicing salts



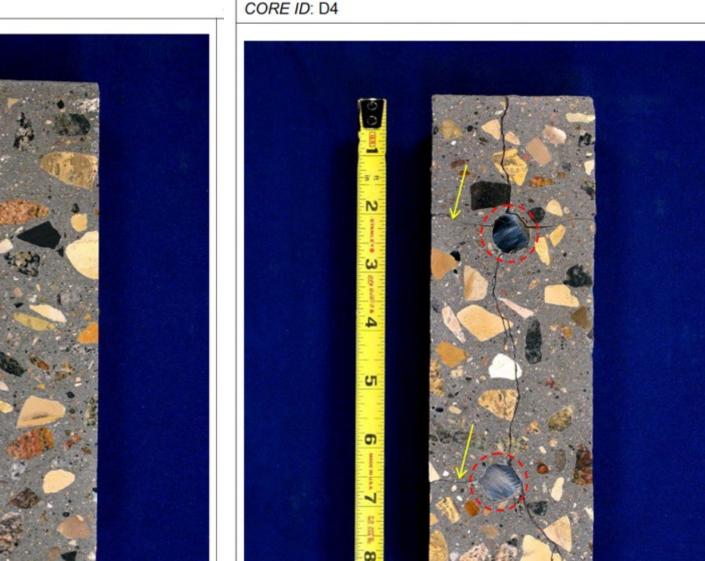
- Constructed in 2020
 - Noticeable deck cracking before the commission
- Concrete met specification requirements
 - Compressive strength, chloride penetration
- Exposure to severe deicing salts
 - Cracking is a concern for durability
- Investigation of the potential cause(s)
 - Document review, coring, petrography, etc.
- Responsibility
 - MT, EOR, contractor, material supplier, etc.
- Repair recommendations
 - Crack repair vs. crack repair plus overlay

- Constructed in 2020
 - Noticeable deck cracking before the commission
- Concrete met specification requirements
 - Compressive strength, chloride penetration
- Exposure to severe deicing salts
 - Cracking is a concern for durability
- Investigation of the potential cause(s)
 - Document review, coring, petrography, etc.
- Responsibility
 - MT, EOR, contractor, material supplier, etc.
- Repair recommendations
 - Crack repair vs. crack repair plus overlay
- Shrinkage-induced cracking
- Crack repair, waterproofing, and overlay

www.icri.org

	Core ID	D1
	Core Length	7.2 to 7.5 in. Partial depth
	Cracking	None
	Microcracking	 Shallo Core laggre Short body e
	Physical paste properties*	Hard and dense throughout
	W/cm	Moderately low to low
	Estimated air content	6 to 8%
		in the finished to s lighter immed
CORE I	D: D1	

	D2	D3	D4	D5	D6	D7	D8
n. th	9.3 to 9.4 in. Full depth	2.1 to 2.4 in. Partial depth	8.8 to 8.9 in. Full depth	8.9 to 9.0 in. Full depth	9.0 in. Full depth	10.1 to 10.2 in. Full depth	10.2 in. Full depth
	A few hairline cracks at top surface, extending downward to 0.7 in., locally passing through aggregates	A full-depth vertical crack, passing through and around aggregates.	A full-depth vertical crack, passing through and around aggregates, and narrowing toward bottom. Crack is aligned with rebars.	A vertical crack extending from formed bottom surface upward to 5.5 in., passing through and around aggregates	None	None	A full-depth vertical crack, passing through and around aggregates, and narrowing toward bottom. Crack is aligned with rebar.


ow vertical microcracks in top and bottom surface regions to depth of 0.3 to 0.7 in.

D5 exhibits a few vertical microcracks extending to depths of 1.5 to 4.0 in. from top surface, passing through and around egates. Two of these vertical microcracks are aligned with major crack.

t (discontinuous), randomly-oriented microcracks are commonly observed in paste between aggregate particles throughout of cores; these microcracks are not related to any deleterious reactions within concrete (like shrinkage-related).

Hard and dense throughout	Hard and dense throughout	Hard and dense throughout	Hard and dense throughout	Hard and dense throughout	Hard and dense throughout	Hard and dense throughout
Moderately low to low	Moderately low to low	Moderately low to low (less than 0.40)	Moderately low to low	Moderately low to low	Moderately low to low (less than 0.40)	Moderately low to low
 6 to 8%	6 to 8%	6 to 8%	6 to 8%	6 to 8%	5 to 7%	7 to 9%

top approximately 0.1 to 0.15 in. region of Cores D1, D2, D3, D4, D5, D6, and D8 locally appears somewhat lighter. The diate surface region is slightly more absorptive compared to the body, but is still judged to be fairly hard and dense.

- Constructed in 2023-2024
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to the marine environment
 - Reinforcing steel concrete cover protection
- Investigation of the potential cause(s)
 - Concrete workability, etc.
- Responsibility
 - Contractor
- Repair recommendations
 - Substrate preparations
 - SCC mixture optimization & placement

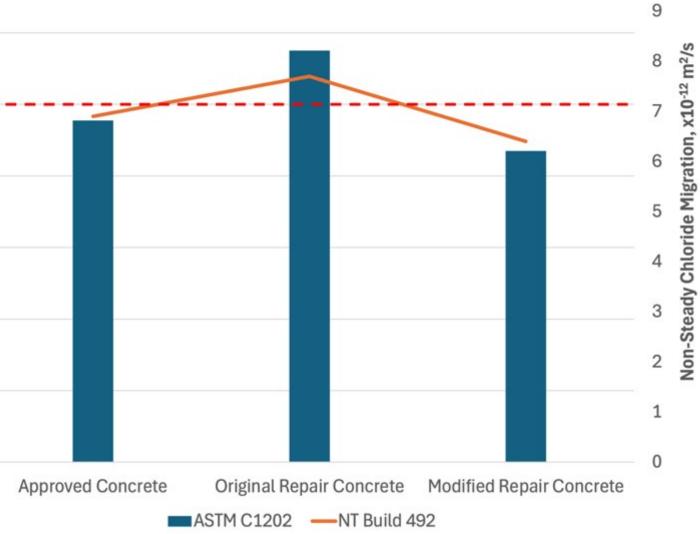
www.icri.org

Tallest Area of Repair: 8"

- Constructed in 2023-2024
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to the marine environment
 - Reinforcing steel concrete cover protection
- Investigation of the potential cause(s)
 - Concrete workability, etc.
- Responsibility
 - Contractor
- Repair recommendations
 - Substrate preparations
 - SCC mixture optimization & placement

- Constructed in 2023-2024
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to the marine environment
 - Reinforcing steel concrete cover protection
- Investigation of the potential cause(s)
 - Concrete workability, etc.
- Responsibility
 - Contractor
- Repair recommendations
 - Substrate preparations
 - SCC mixture optimization & placement

- Constructed in 2023-2024
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to the marine environment
 - Reinforcing steel concrete cover protection
- Investigation of the potential cause(s)
 - Concrete workability, etc.
- Responsibility
 - Contractor
- Repair recommendations
 - Substrate preparations
 - SCC mixture optimization & placement

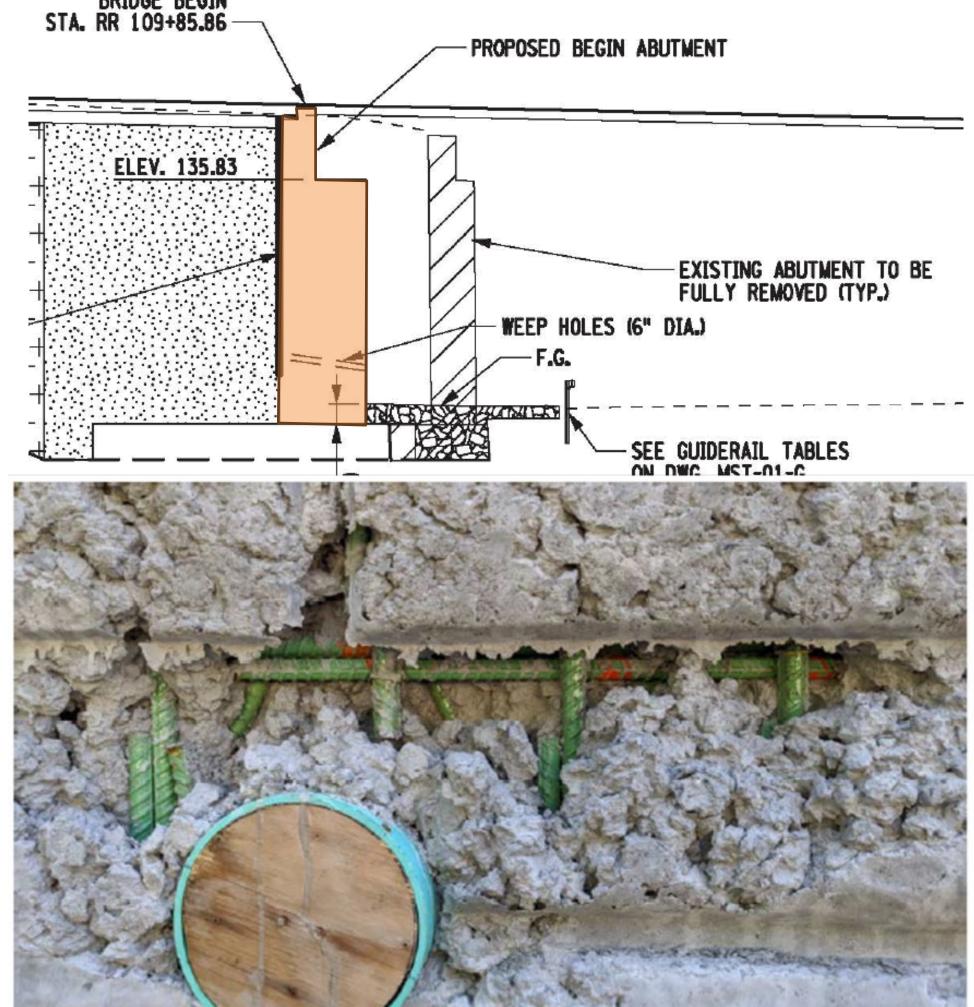


		Paste	conce
 Constructed in 2023-2024 		Morta	r conte
— Consolidation issues in cast-in-place concrete		Coarse Total (
 Specified Service Life 75 years 		Total F	
– Compressive strength, chloride penetration, etc.		Theore	etical I
 Exposure to the marine environment 			
- Reinforcing steel concrete cover protection		1200	
 Investigation of the potential cause(s) 		1000	
– Concrete workability, etc.	ombs	1000	
 Responsibility 	Charge Passed, Coulombs	800	
- Contractor	issed,		
 Repair recommendations 	rge Pa	600 o	
- Substrate preparations	Cha	400	
- SCC mixture optimization & placement			
		200	

www.icri.org

Total cementitious content	752 lbs/yd³
SCM replacement level	30.1%
Info by Volume	
Paste concent, including air	38.9 %
Paste concent, not including air	32.9 %
Mortar content, including air	65.6 %
Coarse-to-fine aggregate ratio	57.0 : 43.0
Total Coarse Aggregate	35.4 %
Total Fine Aggregate	31.3 %
Info by Mass	
Paste concent,	25.9 %
Mortar content, including air	57.2 %
Coarse-to-fine aggregate ratio	57.8 : 42.2
Total Coarse Aggregate	42.8 %
Total Fine Aggregate	31.3 %
Theoretical Density (including air)	147.6 lbs/ft ³

10



BRIDGE BEGIN STA. RR 109+85.86

Case Study: 3 Abutment, NY

- Constructed in 2020
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to deicing salts •
 - Reinforcing steel concrete cover protection
- Investigation of the impact
 - NDT by others, coring, depth of consolidation
- Responsibility
 - Contractor
- Repair recommendations •
 - Remove Remove 1" beyond rebar on both faces
 - Shotcrete repair
- Removed due to schedule impact

Case Study: 3 Abutment, NY

- Constructed in 2020
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to deicing salts
 - Reinforcing steel concrete cover protection
- Investigation of the impact
 - NDT by others, coring, depth of consolidation
- Responsibility
 - Contractor
- Repair recommendations
 - Remove Remove 1" beyond rebar on both faces
 - Shotcrete repair
- Removed due to schedule impact

www.icri.org

25.0										
22.5			•							
20.0	3500									
17.5	4800									
15.0	4400									
12.5	4800		5600			3	900		4900	
10.0	4200		4700			4	400		4400	
7.5	4100		6100			4	300		4000	
5.0	7000		4900			5	000		5000	
2.5	4900		5200			4	900		4000	
0.0	5500		5300			5	500		4600	
	1	3.5	6		8.5		11	13.5	16	18.5
22	.5									
20	.0 4800	0								
17	.5 4300	D								
15	4500	D								
12	.5 5300	D	52	00			5000)	4300)
10	4100	D	51	00			4700)	4700)
	5 4800	D	52	00			5100		5300)
-	.0 5500	D	54	00			6400	,	5400)
-	.5 6100	D	540	00		╋	5000)	4300)
	0.0 6100		59	_			5100		5700	
	1	3.5			8.5	- 1	11	13.5		18

Station (ft)

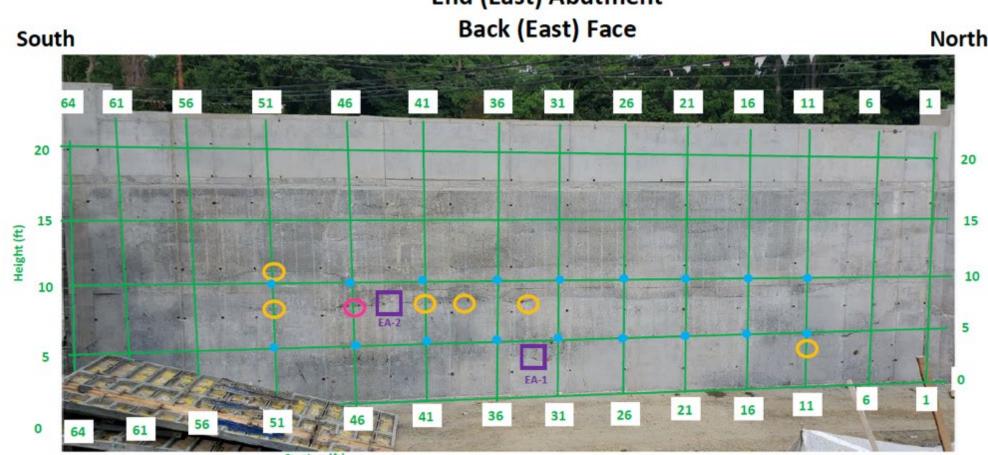
Sensor 3 - Calculated Average Strengths Surface to 3-6+/- inches

																		17.5
																		15.0
	4300								4800	3800	3300	5700	3600		4700			12.5
	5000		5100		5200		4200	5000	4900	2100	4400	4900	5000		4900		5000	10.0
	6000		4000		4100	4500	3500	4400	5400	2900	3600	5400	5700		6400		5000	7.5
	5500		4600		5000	4500	5500	5000	4700	4600	5200	4800	4900		6500		3000	5.0
	5700		4300		3400	1800	4900	4400	5600	4800	4000	4700	4900		4300		2600	2.5
	6300		4100		5200	4900	4400	4300	7000	5400	6100	4300	5200		4800		2600	0.0
.5	21	23.5	26	28.5	31	33.5	36	38.5	41	43.5	46	48.5	51	53.5	56	58.5	61	,

25.0

22.5 20.0

> 22.5 20.0


Surface to 6-10+/-inches

																		17.5
																		15.0
	5100								5700	5000	5600	5600	5700		5500			12.5
	5700		5900		6100		5400	5700	5500	6600	5300	5300	6300		5600		5700	10.0
	7000		5700		5200	5600	4600	5400	6000	3000	4600	6300	6500		6500		5300	7.5
	5500		5100		5800	4900	5200	5300	5600	5000	5600	5400	5700		5900		4700	5.0
	6500		4300		4900	3000	5400	4800	5200	6000	5200	5500	6300		6000		4600	2.5
	5900		5100		7000	4900	5500	5900	6200	5500	4700	4900	6000		6100		5400	0.0
18.5	21	23.5	26	28.5	31	33.5	36	38.5	41	43.5	46	48.5	51	53.5	56	58.5	61	•

Case Study: 3 Abutment, NY

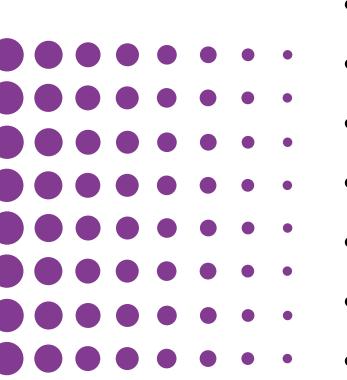
- Constructed in 2020
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to deicing salts •
 - Reinforcing steel concrete cover protection
- Investigation of the impact ullet
 - NDT by others, coring, depth of consolidation
- Responsibility •
 - Contractor
- Repair recommendations •
 - Remove Remove 1" beyond rebar on both faces
 - Shotcrete repair
- Removed due to schedule impact • www.icri.org

Station (ft)

																-												
25.0											Sensor	2 - Cal	culated	l Avera	ge Stre	ngths												25.0
22.5												Sur	ace to	2-3 inc	hes													22.5
20.0		4600 3800 3300 1900 3100 3800 4300 4300 4300 3300 3500 4000 2700															20.0											
17.5		4300 3300 5300 1000 4900 2700 5300 1000 4000 3300 1100 4600 3300 3500 3300															17.5											
15.0																15.0												
12.5		5700 2500 4300 4000 6400 3800 5700 2100 4000 4300 3500 3500 2700 2100 3800 3800															12.5											
10.0		4300 3300 3100 5300 4300 2900 4300 2900 1000 3800 2400 4900 4600															10.0											
7.5		3500		4600		1000		1000	1000	1000	1200	3300	1000	4600		4000		1000		3300		3100		6400		5300		7.5
5.0	4600	4600		5700		4900		2700	4300	3100	3500	4600	3100	5300		3500		3500		3800		5300		3500		4000	3700	5.0
2.5	4100	4600		5300		4700		3300	4000	4900	3800	4000	1000	4300		4000		4600		4000		2000		6000		3500		2.5
0.0	5000	500 3500 5700 3500 4300 3500 4000 4300 4000 4300 4300 4300														0.0												
	64	61	58.5	56	53.5	51	48.5	46	43.5	41	38.5	36	33.5	31	28.5	26	23.5	21	18.5	16	13.5	11	8.5	6	3.5	1	-1.5	

25.0											Sen	sor 3 -	Calcula	ted Av	erage S	trength	IS											25.0
22.5												Su	rface to	3-6+/·	 inches 													22.5
20.0	5300 3500 4100 3200 4600 4800 3900 4400 5200 4400 4600 5000 4700 4100															20.0												
17.5		5300		4100		5700		4400	6500	4800	6000	4500	4900	5000		4300		3200		5800		3200		4200		3200		17.5
15.0		4900		4300		5400		3700	6700	3700	4800	3800	4400	4800		4900		3800		3500		3500		4000		3500	\square	15.0
12.5	6200 4400 5000 4900 6500 4400 4300 5100 4800 5100 4800 3800 4000 5200 5200 5200 12															12.5												
10.0		5200 3200 2800 5400 5900 5200 3900 5400 6200 5300 5400 3800 4300 3200 6000 1000															10.0											
7.5		5100		5300		1700		1300	5100	2400	2800	4900	2600	6200		4900		4800		5100		5100		5700		4700		7.5
5.0	6300	5600		5400		5700		4000	5900	5100	4300	5600	4400	4400		4600		5300		5000		4800		5000		5200	5100	5.0
2.5	4100	6300		6600		6200		4300	6200	6000	4400	4900	3800	5500		4400		5400		5000		2900		5500		4900	\square	2.5
0.0	3300	3500		6000		5600		5700	5400	6000	5500	5600	5300	6300		5100		4300		5100		5100		5400		5300		0.0
	64	61	58.5	56	53.5	51	48.5	46	43.5	41	38.5	36	33.5	31	28.5	26	23.5	21	18.5	16	13.5	11	8.5	6	3.5	1	-1.5	

End (East) Abutment


Case Study: 3 Abutment, NY

- Constructed in 2020
 - Consolidation issues in cast-in-place concrete
- Specified Service Life 75 years
 - Compressive strength, chloride penetration, etc.
- Exposure to deicing salts
 - Reinforcing steel concrete cover protection
- Investigation of the impact
 - NDT by others, coring, depth of consolidation
- Responsibility
 - Contractor
- Repair recommendations
 - Remove Remove 1" beyond rebar on both faces
 - Shotcrete repair
- Removed due to schedule impact

- Repairs during construction are frequent. lacksquare
- Repair specifications may require adjustments
- Understanding the specification & assessing the repair is crucial
- Stakeholder communication make or break
- Aim for durable (and sustainable) repairs
- Challenges with repair execution
- Responsibility & accountability

www.icri.org

2024 FALL CONVENTION OCTOBER 22-25 2024

Resources

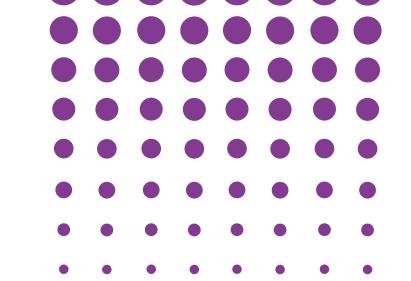
Evaluate this Session

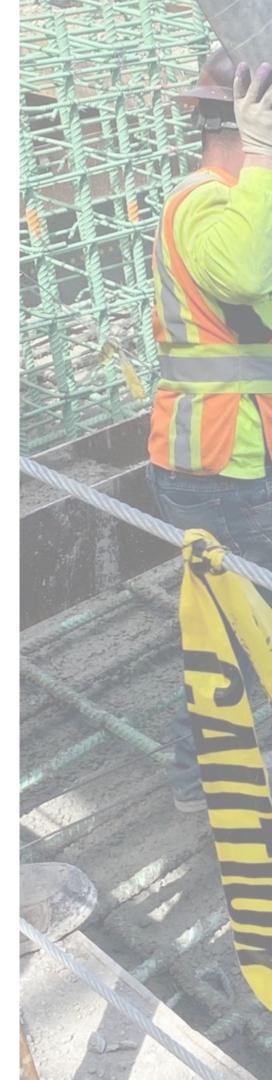
 \bigcirc

SESSION EVALUATION

To complete the session evaluation, open the ICRI Convention App.

Under **Plan Your Event,** select Schedule, and then the Technical Session you are attending. Select the subsession you are attending, scroll down to Resources, and select Evaluate this Session.





Repairs During Construction

Lessons Learned the Hard Way

Jose Pacheco, PhD, PE, PEng Jose@MJ2Consulting.com +1 (224) 508-0403

THANK YOU FOR YOUR ATTENTION www.icri.org

2024 FALL CONVENTION OCTOBER 22-25 2024

ore Repurpose